Lecture 23-Nuclear Power in Space

G. L. Kulcinski March 10, 2004

Why Use Fission Reactors in Space?

 1 kg of ²³⁵U Contains
 500,000 times the energy released by the decay of 1 kg of ²³⁸Pu over 10 years

Fuel Cost/Power Relationships for Space Power

Background on the SP-100 Space Nuclear Reactor

- Joint DOD/ DOE / NASA program to demonstrate that a nuclear reactor can be built and operated in the 10-1000 kW_e range for space application in the 1990's
- Initial work started in 1978 and a down selection to the present SP -100 configuration occurred in 1985.
- Test was scheduled for the early 1990's but funding problems required a restructuring of the program to demonstrate a complete technology and lifetime test by 1998. The program was terminated in FY95.

Overview of the SP-100

- 1) Reactor provides thermal energy to Li working fluid at 1375 °K (initially frozen until orbit is achieved)
- 2) Lithium is pumped by 3 thermoelectric pumps to thermoelectric conversion devices on 12 panels.
- 3) Waste heat is removed by heat pipes filled with Li in Ti tubes surrounded by C-C for protection against meteorites. Rejection temperature = 800 °K
- 4) Electrical power is delivered at 200 VDC and 34.8
 VDC to load ≈25 m from the reactor.

Overview of the SP-100 (2)

- 5.) Core is made up of UN fuel sealed in Re lined Nb-Zr cladding operating with a fast neutron spectrum. It is 37 cm in diameter and 75 cm high.
- 6.) Core is rendered safe during launch by 3 control rods that are removed only after orbit is achieved.
- 7.) Operational control is accomplished by 12 sliding reflector Be elements
- 8.) Total reactor power is \approx 2,300 kW_{th} that is converted into 100 kW_e.

Overview of the SP-100 (3)

- 9.) The shield is a 17° cone made of alternate layers of B_4C , W and LiH.
- 10.) Each TE assembly (12) has a total of 720 cells located on 6 "plate and frame" assemblies each of which produce 1.5 kW_e .
- 11.) System mass goal is (1992) 4000 kg12.) Beside a reference design, there is a backup and advanced design.

Funding For the SP-100 Was Curtailed in 1995

Potential Emplacement Concepts

Fission Reactors have a Distinct Advantage Over Solar Panels and RTG's at the 100 kW_e Level

A 10 kWe Thermionic Space Power Reactor

US and USSR Nuclear Reactor Designs

	United States		Former Soviet Union		
	SNAP-10A	SP-100	Romashka	ROSAT	TOPAZ-I
Flt Status	1965	Design	1965-?	1967-?	1987-?
Power-kW _t	46	2,000	40	<100	150
Power-kW _e	0.65	100	0.8	<5	5-10
Convertor	TE	TE	TE	TE	TI
Fuel	U-ZrH _x	UN	UC ₂	U-Mo	UO ₂
kg ²³⁵ U	4.3	140	49	25	12
Reactor Mass-kg	435	5,422	455	<390	320
Coolant	NaK	Li	None	NaK	NaK