Lecture 23-Nuclear Power in Space

G. L. Kulcinski March 10, 2004

Why Use Fission Reactors in Space?

- 1 kg of ${ }^{235} \mathrm{U}$ Contains 500,000 times the energy released by the decay of 1 kg of ${ }^{238} \mathrm{Pu}$ over 10 years

Fuel Cost/Power Relationships for Space Power

Background on the SP-100 Space Nuclear Reactor

- Joint DOD/ DOE / NASA program to demonstrate that a nuclear reactor can be built and operated in the $10-1000 \mathrm{~kW}_{\mathrm{e}}$ range for space application in the 1990's
- Initial work started in 1978 and a down selection to the present SP -100 configuration occurred in 1985.
- Test was scheduled for the early 1990's but funding problems required a restructuring of the program to demonstrate a complete technology and lifetime test by 1998. The program was terminated in FY95.

Overview of the SP-100

1) Reactor provides thermal energy to Li working fluid at $1375^{\circ} \mathrm{K}$ (initially frozen until orbit is achieved)
2) Lithium is pumped by 3 thermoelectric pumps to thermoelectric conversion devices on 12 panels.
3) Waste heat is removed by heat pipes filled with Li in Ti tubes surrounded by C-C for protection against meteorites. Rejection temperature $=800^{\circ} \mathrm{K}$
4) Electrical power is delivered at 200 VDC and 34.8 VDC to load $\approx 25 \mathrm{~m}$ from the reactor.

Overview of the SP-100 (2)

5.) Core is made up of UN fuel sealed in Re lined $\mathrm{Nb}-\mathrm{Zr}$ cladding operating with a fast neutron spectrum. It is 37 cm in diameter and 75 cm high.
6.) Core is rendered safe during launch by 3 control rods that are removed only after orbit is achieved.
7.) Operational control is accomplished by 12 sliding reflector Be elements
8.) Total reactor power is $\approx 2,300 \mathrm{~kW}_{\mathrm{th}}$ that is converted into $100 \mathrm{~kW}_{\mathrm{e} \text {. }}$

Overview of the SP-100 (3)

9.) The shield is a 17° cone made of alternate layers of $\mathrm{B}_{4} \mathrm{C}, \mathrm{W}$ and LiH .
10.) Each TE assembly (12) has a total of 720 cells located on 6 "plate and frame" assemblies each of which produce 1.5 kW_{e}.
11.) System mass goal is (1992) 4000 kg
12.) Beside a reference design, there is a backup and advanced design.

Funding For the SP-100 Was Curtailed in 1995

Potential Emplacement Concepts

IV - 12

Fission Reactors have a Distinct Advantage Over Solar Panels and RTG's at the $100 \mathrm{~kW}_{\mathrm{e}}$ Level

US and USSR Nuclear Reactor Designs

	United States		Former Soviet Union		
	SNAP-10A	SP-100	Romashka	ROSAT	TOPAZ-I
Flt Status	1965	Design	$1965-?$	$1967-?$	$1987-?$
Power-kW $_{\mathbf{t}}$	46	2,000	40	<100	150
Power-kW $_{\mathbf{e}}$	0.65	100	0.8	<5	$5-10$
Convertor	TE	TE	TE	TE	TI
Fuel	$\mathrm{U}-\mathrm{ZrH}_{\mathrm{x}}$	UN	UC_{2}	$\mathrm{U}-\mathrm{Mo}$	UO_{2}
kg ${ }^{\mathbf{2 3 5} \mathbf{U}}$	4.3	140	49	25	12
Reactor Mass-kg	435	5,422	455	<390	320
Coolant	NaK	Li	None	NaK	NaK

