JCL – JOB CONTROL LANGUAGE – SIMPLE TUTORIAL

INTRODUCTION
Job control language. It is a means of communication between a program that

can be written in COBOL , ASSEMBER or PL/I and the MVS operating system. Without

a JCL, you cant able to run a job on MVS operating system.

Let us start with an example jcl, how it looks like, The following jcl is

used to run an cobol program. I will explain in this chapter each and every

line of this jcl. If you are already fimiliar with jcl, please skip first

6 chapters.

(First 1 - 6 chapters intended for beginners)

JCL , used to run a cobol program
//JOB1 JOB (034D),'RAMESH',CLASS='A',PRTY=6

//STEP01 EXEC PGM=COBPROG.

//INFILE DD DSN=SED.GLOB.DES.INFILE,DISP=SHR

//OUTIFLE DD DSN=SED.GLOB.DES.OUTFILE,

// DISP=(NEW,CATLG,DELETE),

// UNIT=DISK,

// SPACE=(CYL,(1,5),RLSE),

// DCB=(RECFM=FB,LERECL=70,BLKSIZE=700)

see the source code of cobol program COBPROG

IDENTIFICATION DIVISION.

 PROGRAM-ID. COBPROG.

*

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT INPUT-FILE ASSIGN TO INFILE.

 SELECT OUTPUT-FILE ASSIGN TO OUTFILE.

*

 DATA DIVISOIN.

 FILE SECTION.

 FD INPUT-FILE

 01 INPUT-REC PIC X(40).

 FD OUTPUT-FILE

 01 OUTPUT-REC PIC X(50).

*

 WORKING-STORAGE SECTION.

 01 END-OF-DATA-EF PIC X(3) VALUE SPACES.

 88 END-OF-DATA PIC VALUE 'YES'.

*

 PROCEDURE DIVISION.

 MAIN-PARA.

 PERFORM 1000-INITILIZATION-PARA.

 PERFORM 2000-PROCESS-PARA THRU 2000-EXIT UNTIL END-OF-DATA.

 PERFORM 3000-CLOSE-PARA.

*

 1000-INITILIZATION-PARA.

 OPEN INPUT INPUT-FILE.

 OPEN OUTPUT PRINT-FILE.

*

 2000-PROCESS-PARA.

 READ INPUT-FILE AT END

 MOVE 'YES' TO END-OF-DATA-EF

 GO TO 2000-EXIT.

 MOVE INPUT-REC TO OUPUT-REC.

 WRITE OUTPUT-REC.

*

 2000-EXIT.

 EXIT.

*

 3000-CLOSE-FILES.

 CLOSE INPUT-FILE OUTPUT-FILE.

*

 3000-EXIT

 EXIT.

Now let us discuss JCL which we have seen.

Before explaining, I will explain few basics about JCL

All JCL statements can consists of up to five types of

fields

 // The two forward slashes are required at the beginning of each

 JCL statement in Columns 1 and 2.

 Name field - This is an optional field. If coded, should start at

 Column 3. It maximum length is 8.

 Operation field - Which indicates the operation that is to be performed

 Operand - This field must appear after Operation field. Must start at 16

 column

 Comments - Comments begin one space after the last operand. Our simple

 example has no comments.

 // Name
 Operation OPerand
 // JOB1 JOB (034D),

 'RAMESH',

 CLASS='A',

 PRTY=6

 // STEP01 EXEC PGM=COBPROG

 // INFILE DD DSN=SED.GLOB.DES.INFILE,

 DISP=SHR

 // OUTIFLE DD DSN=SED.GLOB.DES.OUTFILE,

 // DISP=(NEW,CATLG,DELETE),

 // UNIT=DISK,

 // SPACE=(CYL,(1,5),RLSE),

 // DCB=(RECFM=FB,

 // LERECL=70,BLKSIZE=700)

 The following image explain How our JCL will execute cobol program

[image: image24.png]//J0B1 JOB

//STEPO1 EXEC starting of job

oD
DD DSN-SED.GLOBDES.OUTFILE, cobol prog name
DISP=(NEW,CATLG,DELETE),
Oseo e, to be executed

SPACE=(CYL, (1,5 ,RLSE),
DCB=(RECFM-FB ,LERECL=76,BLKSIZE=780)

Input file name which used in
SELECT INPUT-FILE ASSIGN TO INFILE

Output fle narme which used in
SELECT OUTPUT-FILE ASSIGN TO OUTFILE,

 EXPLANATION -
 //JOB1 JOB (034D),'RAMESH',CLASS='A',PRTY=6
 job card is mainly used to identify job, and tell to MVS about type of job

 it is, priority it has.

 JOB1 is the job name

 034D is accounting information

 RAMESH is name of the programmer

 CLASS is category of job

 PRTY is priority in the class

 //STEP01 EXEC PGM=COBPROG
 EXEC is used to specify the program to be executed.

 STEP01 is the name of the step (you can give any name here)

 COBPROG is the program name to be executed

 //INFILE DD DSN=SED.GLOB.DES.INFILE,DISP=SHR

 INFILE is the name of input file, which is used in cobol program

 DSN=SED.GLOB.DES.INFILE - It is dataset contains actual information to be read.

 DISP=SHR - means another program also can read this program while we

 are reading this file.

 //OUTFILE DD DSN=SED.GLOB.DES.OUTFILE,

 // DISP=(NEW,CATLG,DELETE),

 // UNIT=DISK,

 // SPACE=(CYL,(1,5),RLSE),

 // DCB=(RECFM=FB,LERECL=70,BLKSIZE=700)

 OUTFILE is the name of outputfile, which is used in cobol program

 DSN=SED.GLOB.DES.OUTFILE is the output file data will be written

 DISP=(NEW,CATLG,DELETE) Disp specifies the disposition of dataset,

 NEW - Dataset not exists, need to create

 CATLG - If step executed successfully, dataset should be cataloged

 DELETE - If any error occurred, Dataset should be deleted

JOB STATEMENT

As we discussed in Chapter-1 , Three important input operations are

1. JOB

2. EXEC

3. DD

Now let us look at JOB statement

Syntax of JOB Statement

EXPLANATION to keyword parameters

CLASS PRTY MSGCLASS MSGLEVEL TYPRUN NOTIFY

1. CLASS - Some jobs can be short running, some jobs may take more time other

 may use havy resources. CLASS keyword parameter is used to tell to

 OS about the nature of job we are submitting.

 Syntax -> CLASS=jobclass

 Valid values -> Any alpha betical character between A - Z or

 numbers between 0 - 9

 Example JCL -> //MYJOB JOB (3345Y),'KRISHNA REDDY',CLASS=K

2. PRTY - It is related to CLASS parameter. It assigns priority to jobs which

 belong to the same class. Higher number takes precedence over the

 job with lower number. A job with priority of 12 will run before a

 job with priority 5.

 Syntax -> PRTY=priority

 Valid values -> Any value between 0 to 15

 Example JCL -> //MYJOB JOB (345Y),'KRISHNA REDDY',CLASS=8,PRTY=6

3. MSGCLASS - The MSGCLASS parameter determines the output device to which

 system messages and JCL messages are written

 Syntax -> MSGCLASS=output-class-name

 Valid values -> Any alpha betical character between A - Z or

 number between 0 - 9

 Example JCL -> //MYJOB JOB (456Y),'KRISHNA REDDY',CLASS=7,PRTY=5,MSGCLASS=A

4. MSGLEVEL - is used to tell JCL, which messages to be printed in the device

 specified in MSGCLASS parameter

 Syntax -> MSGLEVEL=(statements,messages)

 Valid values -> Statements may be the number 0,1,2 and messages can be 0 or 1

 STATEMENT

 0 - Related to job statements only printed

 1 - jcl will be printed

 (which includes all cataloged/symbolic parameters)

 2 - only the input jcl statements being printed

 MESSAGES

 0 - Allocation/termination messages will be printed

 If job terminates abnormally

 1 - Allocation/termination messages will be printed

 regardless of whether the job terminates normally or

 abnormally.

 Example JCL -> //MYJOB JOB (3456Y),'SR',CLASS=8,MSGCLASS=S,MSGLEVEL=(1,1)

5. TYPRUN - The TYPRUN parameter is used to specify whether job is to be held

 until further notice or for syntax checking

 Syntax -> TYPRUN=HOLD - Job held until further notice

 or

 TYPRUN=SCAN - Check Jcl for syntax checking

 Example JCL -> //MYJOB JOB (3456Y),'KRISHNA',CLASS=8,PRTY=9,TYPRUN=HOLD

6. NOTIFY - The NOTIFY parameter is used to direct the system, where it has to

 send the success/failure message after completing the job.

 Syntax -> NOTIFY=userid/&SYSUID

 EXAMPLE JCL -> //MYJOB JOB (3456Y),'KRISHNA REDDY',CLASS=8,NOTIFY=&SYSUID

 &SYSUID - the userid from which user it has been submited

 //MYJOB JOB (34W5),'KRISHNA REDDY',CLASS=8,NOTIFY=ERT54

 It send the sucess/failture message to ERT54 userid

JOBLIB / STEPLIB

JOBLIB
 It is a DD (Data definition) statement, and it specifies where

 the program (which is specified in EXEC statement) exists.

 It is applicable to all job steps in that job. It cannot be used

 in cataloged procedures.

 Syntax -> //JOBLIB DD DSN=dataset

 EXAMPLE JCL ->

 //MYJOB JOB (E343),'KRISHNA'

 //JOBLIB DD DSN=SE.TEST.LOADLIB,DISP=SHR <--- Attention
 //STEP1 EXEC PGM=COBPROG

 Immediately following the JOB statement is the JOBLIB DD

 statement. This is used to specify the location of the

 program that is to be executed.

STEPLIB
 It is also like JOBLIB. It is used to tell in which dataset

 program resides, It will be coded in JOB STEP. It is only

 for that step instead of entire JOB. It can be placed any

 where in the job step. STEPLIB can be coded in cataloged

 procedures.

 Syntax -> //STEPLIB DD DSN=dataset

 Example JCL -> //MYJOB JOB (U456),'KRISHNA'

 //STEP1 EXEC PGM=COBPROG

 //STEPLIB DD DSN=TEST.MYPROD.LIB,DISP=SHR

 //STEP2 EXEC PGM=COBPROG2

 //STEPLIB DD DSN=TEST.MYPROD.LIB1,DISP=SHR

 In above example, STEP1 is executing COBPROG which

 is member of TEST.MYPROD.LIB

 STEP2 is executing COBPROG2 which is

 member of TEST.MYPROD.LIB1

	[image: image1.png]

	If both the JOBLIB and STEPLIB statements are coded, then the STEPLIB specification will override JOBLIB specification.

	

EXEC statement

EXEC statement
EXEC statement is used to execute a program/procedure

A maximum of 255 EXEC statement can code in an single job

Syntax - //stepname EXEC PGM=program-name,keyword parameters

 Positional parameter - Program-name

Keyword parameters for EXEC
 PARM ACCT ADDRSPC DPRTY PERFORM RD

PARM
 PARAM parameter is used to pass information to program

 Syntax -> PARM=value

 Value is a string can be 1 to 100 characters long.

 PASSING PARAMETER USING PARM PARAMETER

 [image: image2]
 PARM-INDICATOR will contain "RAMESH"

 PARM-LENGTH contains length of string.

Remaining parameters , We wont use much

ACCT - accounting information for that step

ADDRSPC - used to indicate to the system that the job step is use either

 virtual or real storage

DPRTY - used to assign priority to the job step

PERFORM - specifies the rate at which system resources used by job step

RD - restart definition is used to specify automatic restart of a job

 if it abends

		Q. If there is a situation, where we need to code more than 255 steps in a JOB?

A. We need to split jcl into two jcls , at the end of the first jcl check the condition

code and initiate the second jcl.

	

PARAMETERS IN BOTH STATEMENTS (JOB and EXEC)

PARAMETERS IN BOTH STATEMENTS (JOB and EXEC)
COND REGION TIME

These parameters can code in both JOB and EXEC statements, When we code

these parameters on both statement,

JOB - REGION will override EXEC - REGION

JOB - COND will override EXEC - COND

EXEC - TIME will overrirde JOB - TIME

Now let us see details of these parameters

REGION - Specifies the amount of space should be used at the time of

 running a job/step

 Syntax -> REGION=< value >K

 or

 REGION=< value >M

 Example JCL -> //MYJOB JOB (AE32),'RAMESH'

 //STEP1 EXEC PGM=COBPROG,

 // REGION=67K

	[image: image3.png]

	All available storage is assigned to the job or jobstep, If REGION is coded 0K or 0M

	

COND - Each step sends an a return code to the system upon completion.

 This is called condition code. COND parameter is used to control

 the execution of subsequent job steps, depending on the condition

 code that is returned for prior step.

 Return code number between 0 and 4095

 Syntax -> COND=(comparsion-code,condition)

 (If coded on job)

 COND=(comparsion-code,condition [,stepname] [,EVEN / ONLY])

 (If coded on step)

 condition can be GT,GE,LT,LE,EQ,NE

 Example JCL -> COND coded on JOB

 //MYJOB JOB (R475),'KRISHNA REDDY'

 // COND=(4,GT)

 //STEP1 EXEC PGM=COBPROG

 //STEP2 EXEC PGM=COBPROG2

 In this example we are specifing that if the number

 4 is grater than the return code of STEP1, then STEP2

 is to be bypassed. It is elaborated further in the

 following image

 [image: image4.png]MYJOB

STEP1

IF

retim
cod, TRUE

FALSE

STEP2

COND Logical flow

 COND coded on EXEC statement

 //MYJOB JOB (U769),'KRISHNA REDDY'

 //STEP1 EXEC PGM=PROG1

 //STEP2 EXEC PGM=COBPROG,

 // COND=(8,EQ,STEP1)

 //

 In this example the COND parameter is used to specify that

 STEP2 should be by passed if 8 is equal to the return code

 issued by STEP1.

TIME - The time parameter is used to specify the amount of CPU time that a

 job or job step is permitted to utilize.

 Syntax -> TIME=minutes

 OR

 TIME=([minutes] [,seconds])

 minutes can be between 1 and 1439

 seconds can be between 1 and 59

 Example JCL -> If coded on JOB

 //MYJOB JOB (E234),'RAMESH KRISHNA',TIME=(20,30)

 //STEP1 EXEC PGM=COBPROG1

 //STEP2 EXEC PGM=COBPROG2

 //STEP3 EXEC PGM=COBPROG3

 In this example 20 minutes 30 seconds time alloted

 to job. All steps in this job STEP1 STEP2 STEP3 should

 complete its task within 20 min. 30 sec.

 If coded on STEP

 //MYJOB JOB (R567),'KRISHNA'

 //STEP1 EXEC PGM=COBPRO

 // TIME=30

 In this example 30 min. time is alloted to STEP1.

 If STEP1 requires more than 30 min. MYJOB will

 terminate abnormally.

 If coded on both STEP AND JOB

 //SECOND JOB ,'R. KRISHNA',TIME=3

 //STEP1 EXEC PGM=C,TIME=2

 //STEP2 EXEC PGM=D,TIME=2

 In this example, the job is allowed 3 minutes of execution time.

 Each step is allowed 2 minutes of execution time. Should either

 step try to execute beyond 2 minutes, the job will terminate

 beginning with that step. If STEP1 executes in 1.74 minutes and

 if STEP2 tries to execute beyond 1.26 minutes, the job will be

 terminated because of the 3-minute time limit specified on the

 JOB statement.

	[image: image5.png]

	By coding TIME=1440 or TIME=NOLIMIT, It will give a job or step an unlimited amount of time.

	

	[image: image6.png]

	To allow a job or step to use the maximum amount of time, code TIME=MAXIMUM.
Coding TIME=MAXIMUM allows the job or step to run for 357912 minutes. (Approx. 248 days)

	

DD STATEMENT

The DD statement (Data Definition), is used to identify the source of input

and the placement of output information

Syntax -> //ddname DD < positional / keyword parameters >

 ddname must be unique in the job

 Positional parameters - *

 DATA

 DUMMY

 DYNAM

 Keyword Parameters - DSN

 DISP

 UNIT

 SPACE

 DCB

 VOLUME

DSN PARAMETER

 DSN parameter is used specify the data set name

 Syntax -> DSN=dataset name

 Example JCL -> //MYJOB JOB (ER3),'RAMESH R'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.MYLIB

 TEST.GLOB.MYLIB will be used in the COBPROG program.

TEMPORARY DATA SETS
 Temporary data set is created during job and deleted at the end of the job.

 Temporary data set can be coded by using two ampersands followed by name.

 Example JCL --> //MYJOB JOB (E456),'RAMESH'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=&&TEMP

 Here TEMP is an temporary dataset will be deleted upon job completion.

DISP PARAMETER
 The DISP parameter is used specify the disposition of dataset which is

 coded on DSN parameter.

 Syntax ->

 [image: image7.png]DISP=(status,normal-disposition,abnormal-disposition)

Curtent status of data set
(ie. whether is exists or
has to be created)

Upen normal terrination Upon abnormal termination
of job, how data setisto of job, how data set is to
be disposed (deleted or be disposed (deleted or
cataloged etc.) cataloged etc...)

DISP Syntax

 Parameter on the DISP statement

 Status Normal Disposition Abnormal Disposition
 NEW DELETE DELETE

 OLD CATLG CATLG

 MOD UNCATLG KEEP

 SHR KEEP UNCATLG

 PASS

 STATUS

 NEW - Dataset will be created. (file should not exists)

 OLD - Dataset should exists.

 MOD - Dataset will be created If not exists.

 SHR - Dataset can be used by other jobs also

 NORMAL DISPOSITION

 (Happened upon sucessful execution of job step)

 DELETE - Dataset should be deleted

 CATLG - Dataset will be cataloged

 UNCATLG - Dataset will be removed from system catalogs

 KEEP - Dataset will be retained (This parameter should

 be used with permanent data sets)

 PASS - Dataset is to be passed subsequent job step in

 the same job

 ABNORMAL DISPOSITION

 (Happened upon unsucessful execution of job step)

 DELETE - Dataset should be deleted

 CATLG - Dataset will be cataloged

 UNCATLG - Dataset will be removed from system catalogs

 KEEP - Dataset is to be kept

 EXAMPLE JCL --> //MYJOB JOB (E674),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.TEMP,

 // DISP=(NEW,CATLG,DELETE)

 In this example ,

 DISP=(NEW,CATLG,DELETE)

 NEW - TEST.GLOB.TEMP is not exists, it will be created

 CATLG - Upon successful execution of job step, data set

 will be cataloged

 DELETE - If job terminicated abnormally, dataset will be deleted

UNIT PARAMETER
 In IBM Mainframe environment, All devices have an address assigned to

 them at the time they added to the sytem. Devices can be referenced

 using this addresses. UNIT parameter is used to specify thise address.

 Syntax -> UNIT=device_address/device_type/device_group_name/TAPE

 EXAMPLE JCL -> //MYJOB JOB (R345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.TEST.LIB,

 // UNIT=SYSDA

 In above example, COBPROG is executed, and a file INFILE which may

 reside on any of the devices which are grouped under the symbolic name

 SYSDA will be accessed

VOL PARAMETER
 This parameter is used to identify the volume serial number on which

 dataset is reside. The VOL dataset is used with disk and tape datasets.

 Syntax -> VOL= volumelabel/data set label

 Sub parameters used with VOL parameter

 SER - Specification of serial number

 REF - Referencing VOL specification from a prior step

 PRIVATE - Allowing access to volume by single user

 RETAIN - Inhibiting dismounting of volume until end of job

 SEQ - Specification of sequence in which volumes are to be mounted

 EXAMPLE JCL --> //MYJOB JOB (E454),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.TEMP,

 // VOL=SER=(VOL1,VOL2,VOL3)

 In this example the data set called DATA3 resides on 3 volumes whose

 serial numbers are VOL1,VOL2,VOL3. The Operating system will request

 that all volumes be mounted at the same time.

SPACE PARAMETER
 The SPACE parameter is used to allocate space for datasets.

 We can allocate space in Cylinders/Tracks/Blocks

 Syntax -> SPACE=(CYL,(primary,secondary,directory),RLSE,CONTIG,MXIG,ROUND)

 Instead of CYL, We can use TRK or BLK

 Meaning of Sub Parameter

 TRK - Requesting space in track

 CYL - Requesting space in cylinders

 PRIMARY - Primary storage to be allocated at the time of

 data set created

 SECONDARY - Additional storage to be allocated ,

 If primary storage is not sufficient

 DIRECTORY - Space for recording of name and location of partitioned

 data sets

 RLSE - Request for release of space previously allocated unused

 space after completion of job

 CONTIG - Request for contiguous space

 MXIG - Request for large aread of contiguous space

 ROUND - Request for entire cylinder for storage of data set

 EXAMPLE JCL -> //MYJOB JOB (W345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.LIB

 // UNIT=4560

 // SPACE=(CYL,(30,4))

 In this example, 30 cylinders are requested as primary space and 4

 additional cyliders as secondary space.

	[image: image8.png]

	Upto 15 extends of secondary space (in our example it is 4) will be alloted , If space is not sufficient.

	

DCB PARAMETER

 Records in dataset may contain FIXED length / VARIABLE length.

 The DCB (Data Control Block) parameter is used to specify record

 format,record length, block size etc..

 Syntax -> //ddname DD DCB=< parameters >

 Subparameters in DCB

 RECFM - Specification of record format - F/FB/V/VB/U

 LRECL - Specification of record length

 BLKSIZE - Specification of block size

 BUFNO - Specification of buffers

 EXAMPLE JCL -> //MYJCL JOB (E3445),'RAMESH'

 //STEP1 EXEC PROG=COBPROG

 //INFILE DD DSN=TEST.GLOB.LIB

 // UNIT=234,

 // DSN=(LRECL=80,

 // RECFM=FB,

 // BLKSIZE=800,

 // BUFNO=30)

 In this example, The DCB parameter specifies that this file is to

 have a logical record length of 80 bytes, it will have a fixed block

 record format, and the block will 800 (800 is multiple of 80). The

 BUFNO parameter is set to 30, indicating upto 30 buffers may be

 utilized in virtual storage for this data set.

 Default buffers are 5,if you not specified any thing

	[image: image9.png]

	When you specified V for RECFM parameter, LRECL value is largest record in the file plus 4 bytes. These four bytes contain the actual length of each variable length record in the file

	

SPECIAL DD STATEMENT

1. DUMMY

 DSN=NULLFILE

2. Concatenating Data sets

3. Passing data to cobol program using - SYSIN DD *

4. SYSOUT

5. SYSUDUMP

6. SYSADUMP

1. DUMMY or DSN=NULLFILE
 Some times we need to testing of program, without using actual datasets.

 Then we can use DUMMY or DSN=NULLFILE.

 If we use DUMMY, operating system simulates the presence of a file. When

 you reading Operating system sends end of file request to program.

 Example JCL --> //MYJOB JOB (W345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DUMMY

2. CONCATENATING DATA SETS

 In JCL , we can concatenate different files by giving their name one after

 another. All data sets concated must be of the same type. For example,

 partitioned data sets can be concatenated only with partitioned data sets.

 Example JCL --> //MYJOB JOB (W345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.FILE1

 // DSN=TEST.GLOB.FILE2

 // DSN=TEST.GLOB.FILE3

 In program , we will read it as an single file. concatination of three

 files done by operating system.

	[image: image10.png]

	Maximum of 255 sequential data sets can be concatenated together
Maximum of 16 partitioned data sets can be concatenated together

	

3. PASS DATA TO COBOL PROGRAM USING - SYSIN DD *

 This is the one of the way of passing data to program. There are two

 syntax's to pass data.

 Syntax1 -> //MYJOB JOB (W234),'RAMESH'

 //STEP1 EXEC PGM=COBPROG

 //SYSIN DD *

 /*

 Syntax2 -> //MYJOB JOB (E345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //SYSIN DD DATA

 /*

 [image: image11.png]Jor

7/MYJOB JOB (E345),'KRISHNA REDDY
7/STEP1 EXEC PGH-COBPROG
Z/SYSIN_ DD %

23423428
7

coBoL

PROCEDURE DIVISION.
0000-HAIN-PARA.

ACCCEPTCENP-NUHBER

SYSIN - Data passing to program

4. SYSOUT

 The SYSOUT parameter is used to send the output which is generated during

 job execution.

 Syntax -> //ddname DD SYSOUT=class

 EXAMPLE JCL -> //MYJOB JOB (R456),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD SYSOUT=A

 In this example, COBPROG is executed and all generated outputs

 are directed to class (here it is letter A)

	[image: image12.png]

	If * used with SYSOUT (SYSOUT=*) parameter, The class assigned to the MSGCLASS parameter will be used to SYSOUT.

	

5. SYSUDUMP

 SYSUDUMP is used to dump the content of various registers, variables and

 datasets acccessed at the time of abnormal termination, into a dataset.

 The dump is in hexadecimal.

 Syntax --> //SYSUDUMP DD

 EXAMPLE JCL --> //MYJOB JOB (W345),'RAMESH'

 //STEP1 EXEC PGM=COBPROG

 //SYSUDUMP DD DSN=TEST.PROD.LIB

6. SYSABEND
 SYSABEND is used to dump the contents of various registers variables ,

 datasets accessed and The nucleus at the time of abnormal termination.

 The dump is in hexadecimal.

 Syntax --> //SYSABEND DD

 EXAMPLE JCL --> //MYJOB JOB (WE345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

INSTREAM and CATALOGED PROCEDURES
1. Introduction

2. Instream Procedure

3. Cataloged procedure

4. Modify statements in a procedure

5. Symbolic parameters

INTRODUCTION
 In JCL, We have an important concept reusability in the form of

 Instream and Cataloged procedures, Often, in work environments

 users can utilized same JCL. Using instream / cataloged procedures

 we can reuse the jcl code which was stored in another data set, in

 our data set.

 Syntax for Executing procedure

 --> EXEC [PROC=]procedure-name

INSTREAM PROCEDURE
 A JCL Procedure is a pre-written segment of code, that you can include

 in your JOB. You code instream data set within the job and use it in

 that job as many times as you want.

 An Instream Procedure JCL Example

 [image: image13.png]//WHRANM JOB (E342), KRISHNA REDDY',NOTIFY=SDEG4

" HSGCLASS=X,MSGLEVEL=(1,1)
7 /¥PROC__PROC

J7ISTEPYG EXEC pon-cospRnc
JISsaT W Sisour

JZILE DD DSNOTEST.cL08.L1B,o1sP-sHR

JAUTFILE DD DSH-(NEWDELETE DELETE) - | nstream

1" UNIT=SYSDA,SPACE=(CYL,(20,10))

J7isTerzo exec Poi-coaPaby

JrSsor W Sisan

J7NEILEY DD DSNOTEST.cL0B.LIB,01SP-SHR

7 PEND}

J/WSTEFTS EXEC pon-nIneRod

JANEILE B> DSNCTEST.GLoB.SPaCE LIB,DISP-SHR i 1CL which
//MSTEP20 DD {— executes Instream
//MSTEP30 DD Procedure

1"

 EXPLANATION
 - Instream procedure should be defined , before any EXEC statement defined

 - Instream procedure startes with PROC and ends with PEND statements

 - Instream procedure is executed when we main jcl called.

	[image: image14.png]

	The maximum number of instream procedures you can in any job is 15

	

CATALOGED PROCEDURES
 Pre-written segment of code (which is stored as an member of PDS),

 which you can use as many times you want in any job in the system.

 IBM supplies a utility program called IEBUPDTE; this program places

 cataloged procedures into partitioned data sets. These procedures

 are placed inside a system library called SYS1.PROCLIB.

 Developing Catalog Procedure

 STEP1:
 Write an Cataloged procedure in MYLIB.EXAMPLES.TEST(CATALOG1)

 //CATLOG1 PROC

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=TEST.GLOB.LIB,

 // DISP=SHR

 //OUTFILE DD DSN=TEST.GLOB.SPACE.LIB,

 // DISP=SHR

 STEP2 :
 Write Main JCL which will call out CATALOG1 JCL

 //MYJOB JOB (WE234),'RAMESH',CLASS=A

 // JCLLIB ORDER=(MYLIB.EXAMPLES.TEST) <-- Attention

 //STEP1 EXEC CATALOG1 <-- Attention

 //

 EXPLANATION
 - When you executing CATALOGED PROCEDURE, If you not specified

 where it is with JCLLIB statement , it will serach for this

 procedure in system procedure library SYS1.PROCLIB

 - There many IBM-supplied procedures that compile, link, and run programs

	[image: image15.png]

	Job will search the JCLLIB libraries first, in the order in which they’re coded. If the procedure is not found in any of the named libraries, SYS1.PROCLIB is searched.

	

	[image: image16.png]

	The following statements cannot be included within the procedure
JOB
DD * or DD DATA
JES2 or JES3 control statements

	

MODIFY STATEMENTS IN A PROCEDURE
 There are times, when we want to change procedure statements according

 to our requirement, IBM provided a way without changing actual procedure,

 we can add/modify contents of procedure. Let us discuss what are the ways

 There are two types of modification we can do ,

 1. on EXEC statement

 2. on DD statement

 on EXEC statement

 We can do following functions on EXEC statement in a procedure

 - Modify parameter on EXEC statements
 PROCEDURE STATEMENT - //STEP10 EXEC PGM=COBPROG,TIME=30

 PARAMETER OVERRIDE - //MYSTEP EXEC PROC=MYPROC,TIME.STEP10=40

Now Resultant TIME value for that step (in proc) is 40

 - Adding parameter to an EXEC statement / all EXEC statement
 PROCEDURE STATEMENT - //STEP10 EXEC PGM=COBPROG,TIME=30

 PARAMETER ADDING - //MYSTEP EXEC PROC=MYPROC,REGION.STEP10=56K

 (for single step)

 REGION will be added to the STEP10 in MYPROC procedure

 PARAMETER ADDING - //MYSTEP EXEC PROC=MYPROC,REGION=56K

 (for single step)

 If REGION is not available for any step in that procedure.

 REGION will be added to all steps in procedure. If REGION

 is available for any step in procedure, REGION value will

 be override existing value on that step.

 - Nullifying the parameter value
 PROCEDURE STATEMENT - //STEP10 EXEC PGM=COBPROG,TIME=30

 PARAMETER ADDING - //MYSTEP EXEC PROC=MYPROC,TIME.STEP10=

 Dont give any value for that parameter, it will nullifying

 that parameter value in procedure

 on DD statement

 - Syntax for add/modify DD statements in a procedure
 //name EXEC [PROC=]procedure-name

 //[procstepname].ddname DD parameter=value

 //

 We can do following functions on EXEC statement in a

 procedure using above syntax

 - Modify existing parameter on DD statements within a procedure

 - Add parameter to existing DD statement within a procedure

 - Add DD statement to a job step

 - Nullify the effect of parameter on DD statement in a procedure

SYMBOLIC PARAMETERS
 Usaually, the same JCL can be used by different programmers to

 implement common tasks, such as the opening, reading, and writing

 of data sets. In those cases , we can use symbolic parameters.

 Using symbolic parameters we can pass value to a parameter which

 is used in procedure. A symbolic parameter on a DD statement is

 coded the parameter preceded by an ampersand.

 Syntax for assigning values to symbolic parameters in a procedure

 //[name] EXEC [PROC=]procedure-name,symbolic-parameter=value

 EXAMPLE JCL -> Procedure which is using symbolic parameter

 //MYPROC PROC

 //MYSTEP EXEC PGM=COBPROG

 //INFILE DD DSN=&DOC..TEST.LIB,DISP=SHR

 //OUTFILE DD DSN=&DOC..TEST.OUT,

 // DISP=(NEW,KEEP,DELETE),

 // UNIT=SYSDA,

 // SPACE=(CYL,(&SPACE))

 The invoking EXEC statement

 //STEPA1 EXEC MYPROC,DOC=MYLIB,SPACE='10,5'

 The effective JCL

 //MYPROC PROC

 //MYSTEP EXEC PGM=COBPROG

 //INFILE DD DSN=MYLIB.TEST.LIB,DISP=SHR

 //OUTFILE DD DSN=MYLIB.TEST.OUT,

 // DISP=(NEW,KEEP,DELETE),

 // UNIT=SYSDA,

 // SPACE=(CYL,('10,5'))

 EXPLANATION -
 In above example, &DOC,&SPACE are symbolic parameters in MYPROC procedure

 We are passing values from invoking JCL,these value will be override the

 &DOC and &SPACE where ever they find in the procedure

Generation Data Groups (GDG)
1. INTRODUCTION

2. CREATION OF GDG

3. USING GDG

4. ALTERING GDG DEFINITION

5. DELETING GDG

6. IMPORTANT PRACTICAL QUESTIONS

1. INTRODUCTION
 Generation Data Groups or GDGs are a group of data sets which

 are related to each other chronologically and functionally.

 These related Data Sets share a unique Data Set Name.

 Every GDG data set has a Generation number and Version number assigned

 to each data set.

 EXAMPLE -- 'MYLIB.LIB.TEST.G0001V00'

 'MYLIB.LIB.TEST.G0002V00'

 'MYLIB.LIB.TEST.G0003V00' <-- Current Version

 Generation Number -> GaaaaVnn

 aaaa is between 0000 to 9999

 nn is between 00 to 99

 In JCL, we refer current version with 0 (Ex. MYLIB.LIB.TEST(0))

 new version going to create with +1 (Ex. MYLIB.LIB.TEST(+1))

 older versions , refer with -1 -2 -3 etc....

 (Ex. MYLIB.LIB.TEST(-1)) <- OLDER VERSION

 [image: image17.png]GDG STRUCTURE

-2) 1 1) 7 (0

current version

 Example for where we can use this GDGs.
 Usually, In production environment, for every month we need

 to run jobs to create reports for that month.

 Let us suppose for January, We can code it MYLIB.LIB.TEST.JAN
 for FEB, We can code it MYLIB.LIB.TEST.FEB
 for MAR, We can code it MYLIB.LIB.TEST.MAR
 So , Every month we need change dataset name in JCL, before

 submitting the job. Whenever we enterred into another year,

 We need to delete old years data sets.

 We need to do above task carefully, If we use GDG, It will take

 care following things

 - It will maintain all generation of data sets

 - It will delete/uncatalog older generation

 - Very easily, we can refer current and older versions of data sets

 - No need of change the JCL every time when we submit

2. CREATION OF GDG
 Before using GDG , We need to create GDG index and model.

 IDCAMS (the 'AMS' stands for Access Method Services), utility

 is used to create GDG index.

 Example JCL for creating GDG index
 //MYJOB JOB (W234),'RAMESH'

 //STEP1 EXEC PGM=IDCAMS

 //SYSIN DD *

 DEFINE GDG(NAME(MYLIB.LIB.TEST) -

 LIMIT(10) -

 NOEMPTY -

 SCRATCH)

 /*

 //

 In this example, IDCAMS utility is used to create an index

 for a GDG called MYLIB.LIB.TEST. The number of generations

 that can exist in this GDG is limited to ten. NOEMPTY parameter

 is used to specify , Once the limit is reached, the system is

 instructed to uncatalog the oldest generation data set within the

 GDG. SCRATCH parameter is used to specify to physically delete

 the data set which was uncataloged.

 PARAMETERS WE CAN PASS TO IDCAMS
 NAME - This parameter is used to specify the name of the

 data set that is to be created.

 LIMIT - This parameter is used to specify the the total number

 of generations that the GDG may contain

 EMPTY/NOEMPTY - These two parameters are mutually exclusive. EMPTY

 specifies that all existing generations of the GDG

 are to be uncataloged whever the generations of GDG

 reached the maximum limit NOEMPTY specifies that only

 the oldest generation of the GDG is to be uncataloged

 if the limit is reached

 SCRATCH/NOSCRATCH - These two parameters are mutually exclusive. SCRATCH

 parameter specifies that whenever entry of the GDG is

 removed from the index, it should be deleted physically

 and uncataloged. NOSCRATCH parameter specifies that

 whenever entry of the GDG is removed from the index, it

 should be uncataloged, not physically deleted

	[image: image18.png]

	SCRATCH and NOEMPTY are default parameters

	

 CREATING MODEL
 Once the index has been created, a model data set must be created.

 This model data set contains specifications for the DCB subparameters

 for all data sets that will belong to that GDG. Programmer can override

 this default values if he want.

 EXAMPLE JCL

 //MYJOB JOB (W983),'KRISHNA'

 //STEP1 EXEC PGM=IDCAMS

 //SYSIN DD *

 DEFINE GDG(-

 NAME(MYLIB.LIB.TEST) -

 LIMIT(10) -

 NOEMPTY -

 SCRATCH)

 //STEP2 EXEC PGM=IEFBR14

 //MODEL1 DD DSN=MYLIB.LIB.TEST,

 // DISP=(NEW,KEEP,DELETE),

 // UNIT=SYSDA,

 // SPACE(TRK,0),

 // DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)

 //

 Using IEFBR14, we have created the model, Now GDG is ready to use, In

 next section you will learn how we will use this created GDG.

3. USING GDG
 To use created GDG in our JCL, we need to use name

 (with +1 for new generation) which we used in DEFINE

 GDG command. (i.e. MYLIB.LIB.TEST)

 EXAMPLE JCL

 //MYJOB JOB (SD345),'KRISHNA REDDY'

 //STEP1 EXEC PGM=COBPROG

 //INFILE DD DSN=MYLIB.LIB.TEST(+1),

 // DISP=(NEW,CATLG,DELETE),

 // UNIT=SYSDA,

 // SPACE=(TRK,(20,10),RLSE),

 // DCB=(MODEL.DCB,RECFM=FB,

 // LRECL=80,

 // BLKSIZE=800)

 //

 The program COBPROG is executed. A new generation data set is

 created via the statement

 //INFILE DD DSN=MYLIB.LIB.TEST(+1)

 Since we used (+1) with GDG name, it creates a new generation

 data set.

 The DISP parameter must be set to CATLG for all new generation

 data sets , DISP=(NEW,CATLG,DELETE)

 We used MODEL.DCB in DCB parameter to instruct system to use

 subparameters specified in model GDG.

	[image: image19.png]

	The DSN and UNIT parameters must be coded for all new generation data sets

	

4. ALTERING GDG DEFINITION
 Some times there are situtations where we need to change the

 attributes of GDG. These types of tasks can be performed using

 ALTER command. We will use IDCAMS utitlity to alter GDG attributes.

 In last section, I have create MYLIB.LIB.TEST GDG with NOEMPTY SCRATCH

 subparameters, now I want to change them to EMPTY NOSCRATCH respectively.

 Here is the JCL that will do this:

 //MYJOB JOB (WE345),'KRISHNA'

 //STEP1 EXEC PGM=IDCAMS

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD *

 ALTER MYLIB.LIB.TEST EMPTY NOSCRATCH

 /*

 //

 In this example, the ALTER statement is used to modify the features of

 the GDG called MYLIB.LIB.TEST. Any generations that may exist for that

 GDG will now contain the modified features as well. Any new generations

 that are created for this GDG will now be created based on these new

 features.

5. DELETING GDG

 We can delete an generation of GDG with IEFBR14, Here is the

 JCL to do that

 //MYJOB JOB (ER456),'RAMESH'

 //STEP1 EXEC PGM=IEFBR14

 //DEL1 DD DSN=MYLIB.LIB.TEST(0) <-- Current Version

 // DISP=(OLD,DELETE,DELETE)

 //

 In this example JCL, the program IEFBR14 is executed. The current

 generation of MYLIB.LIB.TEST is deleted.

 To delete GDG index/generations , We need to use DELETE command in

 IDCAMS utility. There are two sub parameters we can use with DELETE

 command.

 They are PURGE and FORCE

 PURGE sub parameter is used in conjunction with DELETE statement to

 delete the GDG index, even if its retention period has not expired.

 FORCE parameter can be coded on the DELETE statement to delete the

 GDG index, the model, and all related generation data sets, if they

 exist.

 EXAMPLE JCL for FORCE

 //MYJOB JOB (W234),'KRISHNA'

 //STEP1 EXEC PGM=IDCAMS

 //SYSIN DD *

 DELETE(MYLIB.LIB.TEST) GDG FORCE

 /*

 MYLIB.LIB.TEST GDG index, the model and all related generation data

 sets will be deleted upon successful execution of this job step.

	[image: image20.png]

	Maximum of 255 data sets exist within one GDG

	

6. IMPORTANT PRACTICAL QUESTIONS
Q. In my JCL, In step1 I will going to create a new generation data

 set for that i gave gdgname(+1). In step2 I want to use same data

 set created by previous step? what number i should give to refer that

 data set (i.e 0 or +1 or +2)? (STEP1 EXECUTED SUCCESSFULLY)

A. +1

Q. Why?

A. Even step1 executed successfully, It is not become the current generation

 of GDG. At the end of the job only it will become the current version of GDG.

 So within the job we need to refer it as new generation only, even that step

 completed sucessfully.

Control Job Processing (IF THEN ELSE) in JCL
There are two ways to control job processing in JCL, One way is by

coding COND parameter either on JOB or on EXEC, Second way is ,

using IF condition.

In previous chapters, we have discussed about COND parameter on both

JOB as well as EXEC.

Now let us discuss about IF condition in JCL

Using IF construct is more powerful than COND.

 - The COND parameter on the first step of a job is ignored

 However,the IF construct is tested

 - We can code symbolic parameters in the IF conditions

 - We can code many types of relational-expressions in IF condition

Syntax of IF
//name IF < condition > THEN

 .

 .

//name1 ELSE

 .

 .

// ENDIF

The condition (ralational expression) consists of:

 Comparison operators

 Logical operators

 Not (¬) operators

 Relational expression keywords.

Example JCL

//EXAMPLE JOB

//S1 EXEC MYPROC1

//COND01 IF RC = 0 THEN

//C01OK EXEC MYPROC2

//CONDE ELSE

//C01ELS EXEC MYPROC3

// ENDIF

EXPLANATION

In above example, S1 is first job step

In 3 rd line, we check the Recturn code of S1 step

if return code is zero then C01OK step will execute

else step C01ELS will going to execute

A Keyword List

	 Keyword
	 Purpose

	 ABEND
	 Tests for an abnormal end of a program

	 ¬ABEND
	 Tests that an abnormal end of a program did not occur

	 ABENDCC
	 Examines an ABEND condition code

	 RC
	 Examines a return code

	 RUN
	 Tests if a job step executed

	 ¬RUN
	 Tests if a job step did not execute

All the keywords can include a stepname and procstepname to refine

the test to a specific job step.

The format is stepname.procstepname.keyword.

RC - checks a return code.

EXAMPLE JCLs

 IF RC = 0 THEN

 IF STEP1.RC < 12 THEN

 If you not given the stepname, then the highest return code from all

 job steps is taken for checking.

ABENDCC - Checks an ABEND condition code

Using ABENDCC we can check System/User completion codes

EXAMPLE

IF ABENDCC = S0C7 THEN

Suppose you want to check error code of particular step,

give stepnname.ABENDCC, If you not given the stepname,

most recent ABEND code that occured is taken for checking

ABEND - checks for an abnormal end of a program

EXAMPLE JCL

 IF ABEND THEN

 IF STEP4.PROCAS01.ABEND = TRUE THEN

If you not given any stepname, all steps prior to this

condition will be checked

RUN - to check whether a job step executed or not

EXAMPLE JCL
Suppose there is a job which contains STEP2, STEP3,STEP4

I have an if condition for STEP2 and STEP3, if condition

is true then STEP2 will be executed, If condition is false

then STEP3 will be executed

I want to execute STEP4 if STEP2 executes,

we can code in the following way

 //CHE01 IF STEP2.RUN THEN

 //STEP4 EXEC MYPROC1

 // ENDIF

	[image: image21.png]

	Either the THEN clause or ELSE clause must contain at least one EXEC statement.

	

	[image: image22.png]

	You can nest another IF construct after the THEN clause or the ELSE clause. You can nest IF/THEN/ELSE/ENDIF statement constructs up to 15 levels of nesting.

	

Restarting and checkpoint in jcl
Restarts are specified using the RD and RESTART parameters.

The RD parameter is used to request an automatic restart of a

job if the job fails.

The RESTART parameter is used to specify a restart point when

a job is resubmitted.

The RD parameter can be used within JOB and EXEC statements to request

an automatic restart if the job fails.

	[image: image23.png]

	JOB RD Overrides EXEC RD

	

RESTART is used when we want to restart a job from a step , when

it abended in a step

Restarting When the System Failed in a JES2 System

JES2 requeues the job for execution if RESTART=Y is in the JES2

/*JOBPARM statement Re-execution is from the beginning of the job.

 Example JCL:

 //J3 JOB ,'R. KRISHNA'

 /*JOBPARM RESTART=Y

 .

 .

Restarting When the System Failed in a JES3 System

If the job was executing when the system failed, the FAILURE parameter

on the JES3 //*MAIN statement tells JES3 how to handle the job. The

job can be restarted, cancelled, held, or printed and then held for restart.

 Example JCL:

 //J4 JOB ,'R. KRISHNA',RD=NC

 //*MAIN FAILURE=RESTART

 .

 .

------------------------ END OF TUTORIAL -------------------------------------

SORT TUTORIAL
ASSUMPTIONS
Before discussing about SORT,let us assume following things

Input file has following data and structure

	INPUT FILE

	MOHANK 23423423434534344 KIRAN

MOHANK 13342345345345345 RAJEEV

ARAMES 34535345325354324 SURESH

SURESH 98347385385933987 PULI

RAMESH 67575789769876785 MADHU

KRISHN 50830948530859340 OIIED

KRISHN 30495849572938495 MADHU

SURESH 98347385385933987 PULI

Simple SORT jcl structue is as follows ----

.

.

//STEP10 EXEC PGM=SORT,REGION=1024K,PARM=parameters

//SYSOUT DD SYSOUT=* Output messages from SORT

//SORTIN DD DSN=...,DISP=SHR Input if SORT request

//SORTOUT DD DSN=... Output for SORT request

//SORTOFxx DD DSN=... OUTFILE output data sets

//SORTXSUM DD DSN=... Output eliminated by the SUM stm

//SORTWKnn DD UNIT=SYSDA, Work files if SORT request

//SYSIN DD * Control statement input data set

 sort control statements

/*

.

.

FOLLOWING ARE THE SORTCARDS FOR DIFFERENT TYPES OF SORTS
	TASK 1. SORT A GIVEN FILE

//SYSIN DD *

 SORT FIELDS=(1,3,CH,A,9,3,CH,A)

/*

	OUTPUT FILE

	ARAMES 34535345325354324 SURESH

KRISHN 30495849572938495 MADHU

KRISHN 50830948530859340 OIIED

MOHANK 13342345345345345 RAJEEV

MOHANK 23423423434534344 KIRAN

RAMESH 67575789769876785 MADHU

SURESH 98347385385933987 PULI

SURESH 98347385385933987 PULI

EXPLANATION
Above syntax of SORT sorted the recrods, depends

on keys we have provided

(we have provided two keys in FIELDS parameter)

FIRST KEY

1,3,CH,A - first key started at col 1 , its length is 3

SECOND KEY

9,3,CH,A - second key started at col 9, its length is 3

In the above example,

CH- means character we may use BI for binary

A - Ascending order

	TASK 2. ELEMINATE DUPLICATES

//SYSIN DD *

 SORT FIELDS=(1,3,CH,A)

 SUM FIELDS=NONE

/*

	OUTFILE

	ARAMES 34535345325354324 SURESH

KRISHN 50830948530859340 OIIED

MOHANK 23423423434534344 KIRAN

RAMESH 67575789769876785 MADHU

SURESH 98347385385933987 PULI

EXPLANATION
if we give SUM FIELDS=NONE it will eliminate duplicates

	TASK 3. SPLIT FILE INTO TWO OR THREE FILES DEPENDS ON CONDITIONS

.

.

.

//SORTOF01 DD DSN=DFC2.VENR07.GLOB.FFB.SFILE4,

// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,

// SPACE=(CYL,(1,4),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SORTOF02 DD DSN=DFC2.VENR07.GLOB.FFB.SFILE5,

// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,

// SPACE=(CYL,(1,4),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SORTOF03 DD DSN=DFC2.VENR07.GLOB.FFB.SFILE6,

// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,

// SPACE=(CYL,(1,4),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

.

.

.

//SYSIN DD *

 SORT FIELDS=COPY

 OUTFIL FILES=01,INCLUDE=(1,6,CH,EQ,C'MOHANK')

 OUTFIL FILES=02,INCLUDE=(1,6,CH,EQ,C'SURESH')

 OUTFIL FILES=03,INCLUDE=(1,6,CH,EQ,C'KRISHN')

/*

	SORTOF01

	MOHANK 23423423434534344 KIRAN

MOHANK 13342345345345345 RAJEEV

	SORTOF02

	SURESH 98347385385933987 PULI

SURESH 98347385385933987 PULI

	SORTOF03

	KRISHN 50830948530859340 OIIED

KRISHN 30495849572938495 MADHU

EXPLANATION
1. SORT FIELDS=COPY - indicate , it for copy of records, not for sort

2. OUTFIL FILES=01,INCLUDE=(1,6,CH,EQ,C'MOHANK')

 OUTFIL FILES=02,INCLUDE=(1,6,CH,EQ,C'SURESH')

 OUTFIL FILES=03,INCLUDE=(1,6,CH,EQ,C'KRISHN')

- SYNCSORT will take data from 1st positionn to 6th position of input

 file and it will compare that data with MOHANK or SURESH or KRISHN

- If data equals to MOHANK then that recordd will copies to dataset defined

 in SORTOF01 step. (because we defined FILES=01 in second condition)

- If data equals to SURESH then that recordd will pass to dataset defined

 in SORTOF02 step. (because we defined FILES=02 in second condition)

- If data equals to KRISHN then that recordd will copied to dataset difned

 in SORTOF03 step. (because we defined FILES=03 in third condition)

	TASK 4. COPY ELIMINATED DUPLICATES INTO ANOTHER FILE

.

.

//SORTXSUM DD DSN=DFC2.VENR07.GLOB.FFB.SFILE8,

// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,

// SPACE=(CYL,(1,4),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

.

.

//SYSIN DD *

 SORT FIELDS=(1,3,CH,A)

 SUM FIELDS=NONE,XSUM

/*

	SORTOUT

	ARAMES 34535345325354324 SURESH

KRISHN 50830948530859340 OIIED

MOHANK 23423423434534344 KIRAN

RAMESH 67575789769876785 MADHU

SURESH 98347385385933987 PULI

	SORTXSUM

	KRISHN 30495849572938495 MADHU

MOHANK 13342345345345345 RAJEEV

SURESH 98347385385933987 PULI

EXPLANATION
1. SORT FIELDS=(1,3,CH,A)

 Input file will be sorted depending up on the key specified above

 1,3,CH,A - key starting position is 1 and length 3, comparing type

 character, sorting is don in ascending order

2. SUM FIELDS=NONE,XSUM

 SUM FIELDS=NONE means it will eliminate duplicates

 XSUM options will copy all records eliminated in sort

 process will copy to another data set defined in

 SORTXSUM step

	TASK 5. COPY RECORDS DEPENDING UPON CONDITION

//SYSIN DD *

 SORT FIELDS=COPY

 INCLUDE COND=(1,6,CH,EQ,C'SURESH')

/*

	OUTPUTFILE

	SURESH 98347385385933987 PULI

SURESH 98347385385933987 PULI

EXPLANATION
above card is to copy records from input file which

contains SURESH at 1st position

	TASK 6. FORMATING A FILE (USING INREC)

//SYSIN DD *

 SORT FIELDS=COPY

 INREC FIELDS=(7:2,5,20:10,3)

/*

	OUTPUT FILE

	 OHANK 342

 OHANK 334

 RAMES 453

 URESH 834

 AMESH 757

 RISHN 083

 RISHN 049

 URESH 834

EXPLANATION
1. SORT FIELDS=COPY

 It is for copy records to output file

2. INREC FIELDS=(7:2,5,20:10,3) (for formatting)

 Here we have two formattings,

 1. 7:2,5 - data at 2nd position of input file with length 5

 copied to 7th position of output file

 2. 20:10,3 - data at 10th position of input file with length 3

 copied to 20th position of output file

In above example, we can use OUTREC instread of INREC,

INREC adds, deletes, or reformats fields before the

records are sorted or merged. so that performance will

be improved

OUTREC adds, deletes, or reformats fields after the

records are sorted or merged.

	Other parameters we can pass with sort card

 SKIPREC=n

 causes sort to skip over 'n' records in the input file before

 starting a sorting or copying operation.

 STOPAFT=n

 causes sort to stop after 'n' records in the input file have

 been sorted or copied.

	Below are successfully executed SORT cards
This is provided for reference (no explanation is given)

1.

 SORT FIELDS=COPY

 OUTFIL FILES=1,

 INCLUDE=(81,2,CH,EQ,C'GM')

 OUTFIL FILES=2,

 INCLUDE=(81,2,CH,NE,C'GM')

2.

SORT FIELDS=(1,16,CH,A)

OUTREC FIELDS=(1:1,10,C'00',13:11,26)

3.

SORT FIELDS=COPY

INCLUDE COND=(110,8,CH,EQ,C' ')

OUTREC FIELDS=(1:45,17,18:78,8)

4.

SORT FIELDS=COPY

OMIT COND=(10,12,CH,EQ,C'026480101509',OR,

 10,12,CH,EQ,C'959333101179')

5.

SORT FIELDS=COPY

OUTFIL FILES=01,

 INCLUDE=(5,2,CH,EQ,C'21',OR,

 5,2,CH,EQ,C'92',OR,

 5,2,CH,EQ,C'68',OR,

 5,2,CH,EQ,C'66',OR,

 5,2,CH,EQ,C'40',OR,

 5,2,CH,EQ,C'91',OR,

 5,2,CH,EQ,C'33',OR,

 5,2,CH,EQ,C'77',OR,

 5,2,CH,EQ,C'76',OR,

 5,2,CH,EQ,C'03',OR,

 5,2,CH,EQ,C'98',OR,

 5,2,CH,EQ,C'02',OR,

 5,2,CH,EQ,C'22',OR,

 5,2,CH,EQ,C'45',OR,

 5,2,CH,EQ,C'58',OR,

 5,2,CH,EQ,C'61',OR,

 5,2,CH,EQ,C'67',OR,

 5,2,CH,EQ,C'69',OR,

 5,2,CH,EQ,C'70',OR,

 5,2,CH,EQ,C'82',OR,

 5,2,CH,EQ,C'83',OR,

 5,2,CH,EQ,C'96')

OUTFIL FILES=02,

 INCLUDE=(5,2,CH,EQ,C'53',OR,

 5,2,CH,EQ,C'54',OR,

 5,2,CH,EQ,C'94',OR,

 5,2,CH,EQ,C'43',OR,

 5,2,CH,EQ,C'41',OR,

 5,2,CH,EQ,C'42',OR,

 5,2,CH,EQ,C'44',OR,

 5,2,CH,EQ,C'01',OR,

 5,2,CH,EQ,C'04',OR,

 5,2,CH,EQ,C'55',OR,

 5,2,CH,EQ,C'57',OR,

 5,2,CH,EQ,C'46',OR,

 5,2,CH,EQ,C'50',OR,

 5,2,CH,EQ,C'31',OR,

 5,2,CH,EQ,C'32',OR,

 5,2,CH,EQ,C'84')

6.

SORT FIELDS=COPY

 OUTFIL FILES=1,ENDREC=1000

 OUTFIL FILES=2,STARTREC=1001,ENDREC=2000

 OUTFIL FILES=3,STARTREC=2001,ENDREC=3000

 OUTFIL FILES=4,STARTREC=3001,ENDREC=4000

 OUTFIL FILES=5,STARTREC=4001,ENDREC=4500

 OUTFIL FILES=6,STARTREC=4501,ENDREC=4600

 OUTFIL FILES=7,STARTREC=4601,ENDREC=5000

7.

SORT FIELDS=(1,10,CH,A)

INCLUDE COND=(43,2,CH,EQ,C'AC')

INREC FIELDS=(1:11,10,11:43,2)

SUM FIELDS=NONE

JCT – JOB CONTROL LANGUAGE – SIMPLE TUTORIAL

 CHAPTER-1 INTRODUCTION TO JCL (for dummies)

 CHAPTER-2 JOB SATATEMENT

 CHAPTER-3 JOBLIB/STEPLIB

 CHAPTER-4 EXEC STATEMENT

 CHAPTER-5 COMMON PARAMETER IN BOTH JOB AND EXEC STATEMENTS

 CHAPTER-6 DD STATEMENT
 CHAPTER-7 SPECIAL DD STATEMENTS
 CHAPTER-8 INSTREAM and CATALOGED PROCEDURES
 CHAPTER-9 Generation Data Groups (GDG)
 CHAPTER-10 Control Job Processing (IF THEN ELSE) in JCL

 CHAPTER-11 Restarting and checkpoint in jcl
Prepared By, C.Kumaresan . MCA

PAGE
1

