

What's New in DFSORT

December, 2004

Frank L. Yaeger

DFSORT Team
IBM Systems Software Development

San Jose, California
Internet: yaeger@us.ibm.com

DFSORT Web Site

For papers, online books, news, tips, examples and more, visit the DFSORT home page at URL:

http://www.ibm.com/storage/dfsort

ii New in DFSORT

 Abstract

z/OS DFSORT V1R5 and DFSORT Release 14 provide important enhancements for conditionally reformatting
records, overlaying only selected parts of records, larger numeric fields and constants, new data formats, restarting
sequence numbers, join and match operations, sampling, repeating and distributing records, arithmetic operations
using numeric fields and decimal constants, reporting, editing, conversion, date and time fields, date and time con-
stants, data analysis, position and length limits, productivity, performance, capacity, storage usage, input and output
processing, and easier migration from other sort products.

This paper introduces you to the new DFSORT and ICETOOL features available with the base DFSORT R14
product (first available in September, 1998), the base z/OS DFSORT V1R5 product (first available in March, 2004),
and subsequent enhancements via PTFs through December, 2004. Examples using the new features are included,
where appropriate.

 Abstract iii

iv New in DFSORT

 Contents

What's New in DFSORT 1
Introduction 1
Larger Fields and Constants 1
New Free Form Formats 2
New ICETOOL Features 2
New Reformatting Features (INREC, OUTREC, OUTFIL) 9
New OUTFIL-Only Features 13
New INCLUDE and OMIT Features 17
New SUM Features 19
New SORT and MERGE Extensions 19
Managed Tape Processing 20
Improvements for RACF's IRRUT200 Utility 20
64-Bit Architecture 20
Multiple Hiperspaces 20
Easier Migration from Other Sort Products 21
Symbols for Fields and Constants 22
Symbols for RACF, DFSMSrmm and DCOLLECT 23
VSAM Processing 24
HFS File Processing 24
Larger Tape Block Sizes 25
Long Variable-Length Output Records 26
Signed/Unsigned Zero 26
Time-of-Day Installation Options Control 26
More Work Data Sets 27
More Merge Data Sets 28
Simplified Installation and Customization 28
Improvements for Copy, Merge and ICEGENER Applications 28
Incomplete Spanned Records 28
LRECL Padding and Truncation 29

 Contents v

vi New in DFSORT

What's New in DFSORT

 Introduction

DFSORT is IBM's high performance sort, merge, copy, analysis and reporting product. DFSORT is an optional
feature of z/OS.

DFSORT, together with DFSMS and RACF, form the strategic product base for the evolving system-managed
storage environment. DFSMS provides vital storage and data management functions. RACF adds security func-
tions. DFSORT adds the ability to do faster and easier sorting, merging, copying, reporting and analysis of your
business information, as well as versatile data handling at the record, field and bit level.

z/OS DFSORT V1R5 and DFSORT Release 14 provide important enhancements for conditionally reformatting
records, overlaying only selected parts of records, larger numeric fields and constants, new data formats, restarting
sequence numbers, join and match operations, sampling, repeating and distributing records, arithmetic operations
using numeric fields and decimal constants, reporting, editing, conversion, date and time fields, date and time con-
stants, data analysis, position and length limits, productivity, performance, capacity, storage usage, input and output
processing, and easier migration from other sort products.

This paper introduces you to the new DFSORT and ICETOOL features available with the base DFSORT R14
product (first available in September, 1998), the base z/OS DFSORT V1R5 product (first available in March, 2004),
and subsequent enhancements via PTFs through December, 2004. Examples using the new features are included,
where appropriate.

Complete information on all of the features of DFSORT and DFSORT's ICETOOL can be found in z/OS DFSORT
Application Programming Guide (SC26-7523-01) and z/OS DFSORT Installation and Customization (SC26-7524-00).
If you're not familiar with DFSORT, DFSORT's ICETOOL or DFSORT Symbols, you should consider going
through z/OS DFSORT: Getting Started (SC26-7527-01). You can access these documents online by clicking the
Publications link on the DFSORT home page at URL:

http://www.ibm.com/storage/dfsort

Larger Fields and Constants

With z/OS DFSORT V1R5 and DFSORT R14, DFSORT and ICETOOL can now handle up to 31-digit signed
values for ZD, PD and FS fields and decimal constants, up to 8-byte signed values for FI fields, and up to 8-byte
unsigned values for BI fields, for all cases. This is especially useful for doing various types of processing for large
COBOL values like PIC S9(20)V9(5) and PIC S9(18) COMP-3.

For example, if you wanted to display the maximum, minimum, average and total of a 25-byte ZD field and an
18-byte PD field in your input records, you could use this ICETOOL operator:

STATS FROM(IN) ON(5,25,ZD) ON(41,18,PD)

 What's New in DFSORT 1

New Free Form Formats

With z/OS DFSORT V1R5 and DFSORT R14, two important new formats have been added for DFSORT and
ICETOOL that allow you to extract the sign and digits from a wide variety of free form fields, ignoring any other
characters in those fields. These new formats make it easy to do various types of processing for numeric values
from up to 44-character fields containing decimal points, separators, leading or trailing signs, currency signs, and so
on.

� The SFF (signed free form numeric) format extracts decimal digits (0-9) from right to left anywhere in the
field to form a positive or negative number. If - or) is found anywhere in the field, the number is treated as
negative, otherwise it is treated as positive. Any combination of characters is valid, but characters other than
0-9, - and) are ignored.

For example, if you had the following values in your input records:

 $358,253.�52

 ($1,86�.1�8)

 ($5.�72)

 $28,�75.936

you could sort the values correctly using the following SORT statement:

 SORT FIELDS=(1,14,SFF,A)

� The UFF (unsigned free form numeric) format extracts decimal digits (0-9) from right to left anywhere in the
field to form a positive number. Any combination of characters is valid, but characters other than 0-9 are
ignored.

For example, if you had the following values in your input records:

2��5/�3/13

2��5.�2.28

2��4-12-18

2��5/�2/16

you could keep the records with a date higher than or equal to 2005/02/28 using the following INCLUDE
statement:

 INCLUDE COND=(1,1�,UFF,GE,+2��5�228)

New ICETOOL Features

With z/OS DFSORT V1R5 and DFSORT R14, important new features have been added to the popular multipurpose
ICETOOL utility.

� The SPLICE operator is a powerful addition to ICETOOL's wide range of capabilities. SPLICE lets you
create output records in a variety of ways by splicing together fields from records that have the same key, but
different information. The fields to be spliced can originate from records in different data sets, so you an use
SPLICE to do various "join" and "match" operations.

The records to be spliced must have their keys in the same location. FB records to be spliced must also be the
same length. So typically, you will want to reformat one or more input data sets and concatenate them for
input to SPLICE.

KEEPBASE, KEEPNODUPS, WITHALL and WITHEACH can be used to control which records are kept
and spliced.

VLENOVLY and VLENMAX can be used to set the record length for spliced VB records.

2 New in DFSORT

USING(xxxx) can be used to supply DFSORT control statements INCLUDE, OMIT, OPTION and OUTFIL
for SPLICE processing. INCLUDE and OMIT can be used to delete records that you don't want in the output
data set. OPTION can be used to specify optional parameters such as MAINSIZE. OUTFIL statements can be
used to further process the spliced records.

In the following SPLICE example, a 3-digit city code is used to join information from two different input data
sets.

IN1 has RECFM=FB and LRECL=30. It contains the following records:

5�3 San Jose CA 1967-12-24

2�7 New York NY 1992-�5-18

42� Boston MA 1986-�9-21

8�6 Denver CO 2��1-1�-�3

721 Chicago IL 1975-�2-�8

IN2 has RECFM=FB and LRECL=20. It contains the following records:

Vezinaw 2�7

Terradista 5�3

Van Noorden 2�7

Yaeger 5�3

Paulsen 8�6

Samuels 8�6

Wilson 2�7

We want to join the records with matching city codes in positions 1-3 of IN1 and positions 14-16 of IN2 to
produce an output data set with RECFM=FB and LRECL=60 that contains the following records:

Vezinaw 2�7 New York NY 1992-�5-18

Van Noorden 2�7 New York NY 1992-�5-18

Wilson 2�7 New York NY 1992-�5-18

Terradista 5�3 San Jose CA 1967-12-24

Yaeger 5�3 San Jose CA 1967-12-24

Paulsen 8�6 Denver CO 2��1-1�-�3

Samuels 8�6 Denver CO 2��1-1�-�3

The following ICETOOL job uses the SPLICE operator to join the records.

 What's New in DFSORT 3

//S1 EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=�

//DFSMSG DD SYSOUT=�

//IN1 DD DSN=... input file1

//IN2 DD DSN=... input file2

//T1 DD DSN=&&T1,UNIT=SYSDA,SPACE=(CYL,(5,5)),DISP=(,PASS)

//T2 DD DSN=&&T2,UNIT=SYSDA,SPACE=(CYL,(5,5)),DISP=(,PASS)

//CONCT DD DSN=�.T1,VOL=REF=�.T1,DISP=(OLD,PASS)

// DD DSN=�.T2,VOL=REF=�.T2,DISP=(OLD,PASS)

//OUT DD DSN=... output file

//TOOLIN DD �

� Reformat IN1 to contain:

� | blanks | key | IN1 data |

COPY FROM(IN1) TO(T1) USING(CTL1)

� Reformat IN2 to contain:

� | IN2 data | key | blanks |

COPY FROM(IN2) TO(T2) USING(CTL2)

� SPLICE the matching IN1/IN2 records to produce:

� | IN2 data | key | IN1 data |

SPLICE FROM(CONCT) TO(OUT) ON(14,3,CH) -

 WITHALL WITH(1,13)

/�

//CTL1CNTL DD �

 OUTREC FIELDS=(14:1,3,17:4,26,6�:X)

/�

//CTL2CNTL DD �

 OUTREC FIELDS=(1,2�,6�:X)

/�

In the next SPLICE example, the input records from data sets FILE1 and FILE2 are separated into the fol-
lowing output data sets:

– BOTH: records that appear in FILE1 and FILE2

– F1ONLY: records that only appear in FILE1

– F2ONLY: records that only appear in FILE2

Here's the ICETOOL job:

4 New in DFSORT

//S1 EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=�

//DFSMSG DD SYSOUT=�

//FILE1 DD �

Vicky

Frank

Carrie

Holly

Paul

/�

//FILE2 DD �

Karen

Holly

Carrie

Vicky

Mary

/�

//BOTH DD SYSOUT=� output for records in File1 and File2

//F1ONLY DD SYSOUT=� output for records in File1 only

//F2ONLY DD SYSOUT=� output for records in File2 only

//T1 DD DSN=&&T1,DISP=(,PASS),UNIT=SYSDA,SPACE=(TRK,(5,5))

//T2 DD DSN=&&T2,DISP=(,PASS),UNIT=SYSDA,SPACE=(TRK,(5,5))

//CONCT DD DSN=�.T1,VOL=REF=�.T1,DISP=(OLD,DELETE)

// DD DSN=�.T2,VOL=REF=�.T2,DISP=(OLD,DELETE)

//TOOLIN DD �

� Add 11 identifier for FILE1 records.

COPY FROM(FILE1) TO(T1) USING(CTL1)

� Add 22 identifier for FILE2 records.

COPY FROM(FILE2) TO(T2) USING(CTL2)

� SPLICE to match up records and write them to their

� appropriate output files.

� BOTH records will have an identifier of '12'

� F1ONLY records will have an identifier of '11'

� F2ONLY records will have an identifier of '22'

SPLICE FROM(CONCT) TO(BOTH) ON(1,1�,CH) WITH(13,1) -

USING(CTL3) KEEPNODUPS

/�

//CTL1CNTL DD �

� Mark FILE1 records with 11

 OUTREC FIELDS=(1,1�,12:C 11)

/�

//CTL2CNTL DD �

� Mark FILE2 records with 22

 OUTREC FIELDS=(1,1�,12:C 22)

/�

//CTL3CNTL DD �

� Write matching records to BOTH file. Remove id.

 OUTFIL FNAMES=BOTH,INCLUDE=(12,2,CH,EQ,C 12),OUTREC=(1,1�)

� Write FILE1 only records to F1ONLY file. Remove id.

 OUTFIL FNAMES=F1ONLY,INCLUDE=(12,2,CH,EQ,C 11),OUTREC=(1,1�)

� Write FILE2 only records to F2ONLY file. Remove id.

 OUTFIL FNAMES=F2ONLY,INCLUDE=(12,2,CH,EQ,C 22),OUTREC=(1,1�)

/�

BOTH contains the following records:

 What's New in DFSORT 5

Carrie

Holly

Vicky

F1ONLY contains the following records:

Frank

Paul

F2ONLY contains the following records:

Karen

Mary

� The COUNT operator can set a return code of 12 or 4 if a specified data set is EMPTY, NOTEMPTY,
HIGHER(n), LOWER(n), EQUAL(n) or NOTEQUAL(n), where n is a specified number of records (for
example, 50000). This makes it easy to control the execution of downstream operators or steps using JCL
facilities like IF or COND. A return code of 12 is set by default. RC4 can be used to set a return code of 4
instead of a return code of 12.

For example, in the following job, the COUNT operator stops STEP2 from being executed by setting a return
code of 12 if the IN data set is empty.

//STEP1 EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=�

//DFSMSG DD SYSOUT=�

//IN DD DSN=...

//TOOLIN DD �

� SET RC=12 IF THE 'IN' DATA SET IS EMPTY, OR

� SET RC=� IF THE 'IN' DATA SET IS NOT EMPTY

 COUNT FROM(IN) EMPTY

/�

// IF STEP1.RC = � THEN

//��� STEP2 WILL RUN IF 'IN' IS NOT EMPTY

//��� STEP2 WILL NOT RUN IF 'IN' IS EMPTY

//STEP2 EXEC ...

...

// ENDIF

� For the SELECT operator, USING(xxxx) can be used to supply DFSORT control statements INCLUDE,
OMIT, OPTION and OUTFIL for SELECT processing. INCLUDE and OMIT can be used to delete records
that you don't want to SELECT. OPTION can be used to specify optional parameters such as MAINSIZE.
OUTFIL statements can be used to further process the selected records.

In the following example, an OMIT statement is used to ensure that records with C'NO' in positions 25-26 are
not processed by the SELECT operator:

SELECT FROM(IN) TO(OUT) ON(12,5,CH) FIRSTDUP USING(CTL1)

//CTL1CNTL DD �

 OMIT COND=(25,2,CH,EQ,C'NO')

In the following example, OUTFIL statements are used to reformat selected and discarded records for certain
record types.

SELECT FROM(INPUT1) TO(OUT1) DISCARD(OUT2) -

ON(31,6,ZD) FIRST USING(CTL2)

//CTL2CNTL DD �

 OUTFIL FNAMES=OUT1,INCLUDE=(6,1,BI,EQ,+1,OR,6,1,BI,EQ,+5)

 OUTREC=(1,2�,21,4,PD,TO=ZD,9�:X)

 OUTFIL FNAMES=OUT2,INCLUDE=(6,1,BI,EQ,+12),

 OUTREC=(1,12,13,5,PD,TO=ZD,X,42,4,FI,TO=ZD,12�:X)

6 New in DFSORT

� For the SELECT operator, FIRSTDUP and LASTDUP let you select the first or last record of each set of
duplicates. Thus, FIRSTDUP and LASTDUP join FIRST, LAST, ALLDUPS, NODUPS, HIGHER(n),
LOWER(n) and EQUAL(n) in SELECT's bag of tricks for dealing with duplicates.

Additionally, DISCARD(savedd) lets you keep the records that do not meet your SELECT criteria at the same
time you use TO(indd) to keep the records that do meet your criteria. You can use TO and DISCARD together
or separately.

In the following example using FIRSTDUP and DISCARD, the first record of each set of duplicates is written
to OUTPUT1. All other records (non-duplicates, second and subsequent duplicates) are written to OUTPUT2.

SELECT FROM(INPUT) TO(OUTPUT1) ON(1,3,CH) FIRSTDUP -

 DISCARD(OUTPUT2)

If INPUT contained the following records:

J�3 RECORD 1

M72 RECORD 1

M72 RECORD 2

J�3 RECORD 2

A52 RECORD 1

M72 RECORD 3

OUTPUT1 would contain the following records:

J�3 RECORD 1

M72 RECORD 1

and OUTPUT2 would contain the following records:

A52 RECORD 1

J�3 RECORD 2

M72 RECORD 2

M72 RECORD 3

� For various ICETOOL operators, the length for CH values has been raised from 80 bytes to 1500 bytes, and
the length for HEX values has been raised from 50 bytes to 1000 bytes. This lets you view and analyze more
of your data.

� The DISPLAY and OCCUR operators create useful reports with a minimum of work. New options let you
create even better looking reports.

DATE, DATE(abcd), DATENS(abc), YDDD(abc) and YDDDNS(ab) can be used to generate current date
constants in various forms, with or without separators, where a, b, c and d represent various parts of the date
(mm, dd, yy, yyyy, ddd) and various separators (for example, ., - or /). TIME, TIME(abc) and TIMENS(ab)
can be used to generate current time constants in various forms, with or without separators, where ab represents
12-hour or 24-hour time and c represents various separators (for example, :, . or -).

HEADER('string1'), HEADER('string1','string2') and HEADER('string1','string2','string3') can be used to
create one, two or three line headings, respectively, for data columns.

INDENT(n) can be used to indent the report by n spaces. BETWEEN(n) can be used to put n spaces between
the data columns. STATLEFT can be used to place statistics strings to the left of the first column of data.

Additional formatting items such as G1-G6 (show numeric values with 4 decimal places), E'pattern' (use a
specified pattern for numeric digits such as dates, phone numbers, and so on), LZ (insert leading zeros), NOST
(suppress statistics), Udd (use dd digits), /D (divide by 10) and /C (divide by 100) join the existing formatting
items to give you new ways to present your data in reports.

Formatting items can be used for VLEN, NUM, VALCNT and BREAK values as well as for ON values.

Here's an example of a DISPLAY operator that uses some of the new options to improve the appearance of a
report:

 What's New in DFSORT 7

 DISPLAY FROM(ACCTS) LIST(FANCY) -

TITLE('Accounts Report for First Quarter') -

DATE(MD4/) BLANK -

HEADER(,'Amount') ON(12,6,ZD,C1,U�8) -

HEADER(,'Id') ON(NUM,U�2) -

HEADER('Account',' Number') ON(31,3,PD,NOST,LZ) -

HEADER(,'Date') ON(1,4,ZD,E'99/99',NOST) -

INDENT(2) BETWEEN(5) -

 STATLEFT -

TOTAL('Total for Q1') -

AVERAGE('Average for Q1')

The FANCY report might look as follows:

Accounts Report for First Quarter �3/15/2��5

 Account

Amount Id Number Date

----------- --- ------- -----

932.71 1 15932 �1/�6

1,376.22 2 ��187 �1/28

831.47 3 15932 �2/12

1,832.61 4 �2158 �2/17

763.89 5 ��187 �3/�5

9,2��.13 6 15932 �3/19

Total for Q1 14,937.�3

Average for Q1 2,489.5�

� For the DISPLAY and OCCUR operators, new formats let you edit SMF, TOD (STCK) and ETOD (STCKE)
date and time values into more recognizable forms as follows:

Format Result

DT1 SMF date interpreted as Z'yyyymmdd'

DT2 SMF date interpreted as Z'yyyymm'

DT3 SMF date interpreted as Z'yyyyddd'

DC1 TOD date interpreted as Z'yyyymmdd'

DC2 TOD date interpreted as Z'yyyymm'

DC3 TOD date interpreted as Z'yyyyddd'

DE1 ETOD date interpreted as Z'yyyymmdd'

DE2 ETOD date interpreted as Z'yyyymm'

DE3 ETOD date interpreted as Z'yyyyddd'

TM1 SMF time interpreted as Z'hhmmss'

TM2 SMF time interpreted as Z'hhmm'

TM3 SMF time interpreted as Z'hh'

TM4 SMF time interpreted as Z'hhmmssxx'

TC1 TOD time interpreted as Z'hhmmss'

8 New in DFSORT

Format Result

TC2 TOD time interpreted as Z'hhmm'

TC3 TOD time interpreted as Z'hh'

TC4 TOD time interpreted as Z'hhmmssxx'

TE1 ETOD time interpreted as Z'hhmmss'

TE2 ETOD time interpreted as Z'hhmm'

TE3 ETOD time interpreted as Z'hh'

TE4 ETOD time interpreted as Z'hhmmssxx'

The interpreted values can be further edited using formatting items. This makes it easy to show SMF, TOD
and ETOD date and time values in meaningful ways.

The following example shows how SMF date and time values can be displayed as easily understood data in a
report on SMF type-14 records.

DISPLAY FROM(SMF14) LIST(SMF14RPT) -

TITLE('SMF Type-14 Records') DATE(4MD/) -

HEADER('Date') ON(11,4,DT1,E'9999/99/99') -

HEADER('Time') ON(7,4,TM1,E'99:99:99') -

HEADER('Sys') ON(15,4,CH) -

HEADER('Jobname') ON(19,8,CH) -

 HEADER('Datasetname') ON(69,44,CH)

The SMF14RPT report might look as follows:

 SMF Type-14 Records 2��5/�3/15

 Date Time Sys Jobname Datasetname

---------- -------- ---- -------- ------------- ...

2��5/�2/2� �6:�3:15 ID�3 JOB����3 SYS1.QRS

2��5/�2/2� 1�:�3:22 ID�2 JOB����2 SYS1.XYZ

2��5/�2/21 14:�5:37 ID�3 JOB����4 SYS1.MNO

2��5/�2/21 22:11:�� ID�3 JOB����5 SYS1.MNO

2��5/�2/24 ��:��:�8 ID�3 JOB����6 SYS1.MNO

New Reformatting Features (INREC, OUTREC, OUTFIL)

With z/OS DFSORT V1R5 and DFSORT R14, many new reformatting features have been added to INREC,
OUTREC and OUTFIL, making each more useful by itself or in conjunction with the other statements.

� INREC, OUTREC and OUTFIL can create reformatted records in one of the following three ways using uned-
ited, edited, or converted input fields and a variety of constants:

– BUILD: Reformat each record by specifying all of its item one by one. BUILD gives you complete
control over the items you want in your reformatted INREC records and the order in which they appear.
You can delete, rearrange and insert fields and constants.

Here's an example of BUILD with INREC:

 INREC BUILD=(1,2�,C'ABC',26:5C'�',

 15,3,PD,EDIT=(TTT.TT),21,3�,8�:X)

 What's New in DFSORT 9

Note: For INREC or OUTREC, you can use FIELDS or BUILD. For OUTFIL, you can use OUTREC
or BUILD.

– OVERLAY: Reformat each record by specifying just the items that overlay specific columns.
OVERLAY lets you change specific existing columns without affecting the entire record.

Here's an example of OVERLAY with OUTREC:

 INREC OVERLAY=(45:45,8,TRAN=LTOU)

Lowercase letters in positions 45-52 of the input record will be changed to uppercase letters in positions
45-52 of the output records. All other bytes in the input record will be copied to the output record without
change.

– IFTHEN clauses: Reformat different records in different ways by specifying how BUILD or OVERLAY
items are applied to records that meet given criteria. IFTHEN clauses let you use sophisticated conditional
logic to choose how different record types are reformatted.

Here's an example of IFTHEN clauses with OUTFIL:

 OUTFIL IFTHEN=(WHEN=(1,5,CH,EQ,C'TYPE1'),

 BUILD=(1,4�,C'��',+1,TO=PD)),

 IFTHEN=(WHEN=(1,5,CH,EQ,C'TYPE2'),

 BUILD=(1,4�,+2,TO=PD,X'FFFF')),

 IFTHEN=(WHEN=NONE),OVERLAY=(45:C'NONE'))

� INREC, OUTREC and OUTFIL can display a numeric field in various ways using DFSORT's M0-M26 pre-
defined edit masks, or edit patterns you define yourself using EDIT=(pattern) and SIGNS=(signs). You can
edit BI, FI, PD, PD0, ZD, CSF/FS, UFF, SFF or Y2x input fields using edit masks or edit patterns. The length
of the output field can be defaulted or specified. As a simple example, if you specify:

 OUTREC FIELDS=(21,6,ZD,EDIT=(SII,IIT.T),SIGNS=(+,-),X,

 6,5,PD,M7)

a zoned decimal value of 053214 in positions 21-26 of the input record will be displayed as ' +5,321.4' in
positions 1-9 of the output record, and a packed decimal value of 235107283 in positions 6-10 of the input
record will be displayed as '235-10-7283' in positions 11-21 of the output record.

� INREC, OUTREC and OUTFIL can convert a field in one numeric format to another numeric format. You can
convert BI, FI, PD, PD0, ZD, CSF/FS, UFF, SFF or Y2x input fields to BI, FI, PD, ZD, ZDF, ZDC or CSF/FS
output fields. The length of the output field can be defaulted or specified. As a simple example, if you
specify:

 OUTREC FIELDS=(21,5,ZD,TO=PD,8,4,ZD,TO=FI,LENGTH=2)

the zoned decimal values in positions 21-25 and 8-11 of the input records will be converted, respectively, to a
packed decimal value in positions 1-3 and a fixed-point value in positions 4-5 of the output records.

� INREC, OUTREC and OUTFIL can edit SMF, TOD (STCK) and ETOD (STCKE) date and time values into
more recognizable forms as follows:

Format Result

DT1 SMF date interpreted as Z'yyyymmdd'

DT2 SMF date interpreted as Z'yyyymm'

DT3 SMF date interpreted as Z'yyyyddd'

DC1 TOD date interpreted as Z'yyyymmdd'

DC2 TOD date interpreted as Z'yyyymm'

10 New in DFSORT

Format Result

DC3 TOD date interpreted as Z'yyyyddd'

DE1 ETOD date interpreted as Z'yyyymmdd'

DE2 ETOD date interpreted as Z'yyyymm'

DE3 ETOD date interpreted as Z'yyyyddd'

TM1 SMF time interpreted as Z'hhmmss'

TM2 SMF time interpreted as Z'hhmm'

TM3 SMF time interpreted as Z'hh'

TM4 SMF time interpreted as Z'hhmmssxx'

TC1 TOD time interpreted as Z'hhmmss'

TC2 TOD time interpreted as Z'hhmm'

TC3 TOD time interpreted as Z'hh'

TC4 TOD time interpreted as Z'hhmmssxx'

TE1 ETOD time interpreted as Z'hhmmss'

TE2 ETOD time interpreted as Z'hhmm'

TE3 ETOD time interpreted as Z'hh'

TE4 ETOD time interpreted as Z'hhmmssxx'

The interpreted values can be further edited using edit masks or edit patterns, or converted to BI, FI, PD, ZD,
ZDF, ZDC or FS/CSF values. This makes it easy to show SMF, TOD and ETOD date and time values in
meaningful ways.

The following example shows how TOD date and time values can be converted to readable form:

� Display a TOD date as C'yyyy/mm/dd' and a

� TOD time as 'hh:mm:ss.xx'.

 OUTREC FIELDS=(X,26,8,DC1,EDIT=(TTTT/TT/TT),X,

 26,8,TC4,EDIT=(TT:TT:TT.TT))

The SORTOUT output might look as follows:

 2��5/�2/�9 1�:27:�4

 2��5/�2/1� �6:13:21

 2��5/�3/�5 12:�7:33

 2��5/�3/22 �6:43:�8

� INREC, OUTREC and OUTFIL can generate current date constants in various forms, with or without separa-
tors, using the parameters DATE=(abcd), DATENS=(abc), YDDD=(abc) and YDDDNS=(ab) where a, b, c
and d represent various parts of the date (mm, dd, yy, yyyy, ddd) and various separators (for example, ., - or /).
INREC, OUTREC and OUTFIL can generate current time constants in various forms, with or without separa-
tors, using TIME=(abc) and TIMENS=(ab) where ab represents 12-hour or 24-hour time and c represents
various separators (for example, :, . or -).

INREC, OUTREC and OUTFIL can also generate current date and time constants as follows:

 What's New in DFSORT 11

Operand Constant

DATE C'mm/dd/yy'

DATE1 C'yyyymmdd'

DATE1(c) C'yyyycmmcdd'

DATE1P P'yyyymmdd'

DATE2 C'yyyymm'

DATE2(c) C'yyyycmm'

DATE2P P'yyyymm'

DATE3 C'yyyyddd'

DATE3(c) C'yyyycddd'

DATE3P P'yyyyddd'

DATE4 C'yyyy-mm-dd-hh.mm.ss'

TIME C'hh:mm:ss'

TIME1 C'hhmmss'

TIME1(c) C'hhcmmcss'

TIME1P P'hhmmss'

TIME2 C'hhmm'

TIME2(c) C'hhcmm'

TIME2P P'hhmm'

TIME3 C'hh'

TIME3P P'hh'

This makes it easy to insert timestamps of various types into your output records. For example, if you used the
following OUTREC statement for a DFSORT run on March 16, 2005 at 03:46:21pm:

 OUTREC FIELDS=(2X,YDDD=(D4.),X,TIME1(:),X,1,1�)

your SORTOUT records would look as follows:

�75.2��5 15:46:21 data

� INREC, OUTREC and OUTFIL can combine numeric fields (p,m,f), decimal constants (+n and -n), operators
(MIN, MAX, MUL, DIV, MOD, ADD, SUB) and parentheses to form arithmetic expressions. The results can
be further edited using editing masks or editing patterns, or converted to BI, FI, PD, ZD, ZDF, ZDC or FS/CSF
values.

Here's an example with an arithmetic expression:

 OUTFIL FNAMES=OUT,

OUTREC=(5:C'% REDUCTION FOR ',21,8,C' IS ',

 ((11,6,ZD,SUB,31,6,ZD),MUL,+1���),DIV,11,6,ZD,

 EDIT=(SIIT.T),SIGNS=(+,-))

� INREC, OUTREC and OUTFIL can translate data in several new ways as follows:

– TRAN=LTOU translates lowercase EBCDIC letters anywhere in a specified field to uppercase EBCDIC
letters. As a simple example, if you specify:

12 New in DFSORT

 INREC OVERLAY=(31:31,11,TRAN=LTOU)

DFSORT will translate lowercase to uppercase in positions 31-41 of each output record. So 'Vicky-123,x'
would be translated to 'VICKY-123,X'.

– TRAN=UTOL translates uppercase EBCDIC letters anywhere in a specified field to lowercase EBCDIC
letters. As a simple example, if you specify:

 OUTFIL OUTREC=(1,4,5,TRAN=UTOL)

DFSORT will translate uppercase to lowercase in the entire data portion of each variable-length output
record. So 'CARRIE-005, CA' would be translated to 'carrie-005, ca'.

– TRAN=ALTSEQ translates characters anywhere in a specified field according to the ALTSEQ table in
effect. As a simple example, if you specify:

 ALTSEQ CODE=(��4�)

 OUTREC OVERLAY=(21:21,5�,TRAN=ALTSEQ)

DFSORT will translate each binary zero (X'00') in positions 21-70 to a space (X'40').

� INREC, OUTREC and OUTFIL can generate sequence numbers in output records. You can create BI, PD, ZD
or CSF/FS sequence numbers. Starting values and increment values can be defaulted or specified. You can
restart the sequence number at the starting value whenever a value in a specified field changes. As a simple
example, if you specify:

 INREC OVERLAY=(81:SEQNUM,8,ZD,START=1���,INCR=1��,RESTART=(25,5))

zoned decimal sequence numbers 00001000, 00001100, 00001200, and so on will be generated in positions
81-88 of the output records. Each time the value in positions 25-29 changes, the sequence number will start
again at 00001000. Note that an F-sign is used for zoned decimal sequence numbers so they will be displayable
and printable.

� By default, DFSORT uses the OUTREC or INREC record length as the SORTOUT LRECL when the
SORTOUT LRECL is unavailable, instead of using the SORTIN length. This can eliminate
unexpected/unwanted padding and truncation. For example, previous to this change, if you had a fixed-length
input data set with an LRECL of 80 and specified:

 OUTREC FIELDS=(1,5�)

you'd get a SORTOUT LRECL of 80 and output records padded with binary zeros from positions 51-80. Now,
instead by default, you'll get a SORTOUT LRECL of 50 and no padding.

The SOLRF installation and run-time options allow you to specify whether you want the SORTOUT LRECL
to be set the new way or old way when INREC or OUTREC is specified, as follows:

– SOLRF=YES (installation) or SOLRF (run-time) tells DFSORT to use the INREC or OUTREC length as
the SORTOUT LRECL. This is the IBM-supplied default and is usually what you want when you specify
INREC or OUTREC. This is also the way OUTFIL OUTREC always works.

– SOLRF=NO (installation) or NOSOLRF (run-time) tells DFSORT not to use the INREC or OUTREC
length as the SORTOUT LRECL. This is the way DFSORT used to work and may cause
unexpected/unwanted padding or truncation of the SORTOUT records.

New OUTFIL-Only Features

With z/OS DFSORT V1R5 and DFSORT R14, in addition to the reformatting features mentioned earlier, many
other new features have been added to the versatile OUTFIL multiple output and reporting function, giving it added
flexibility.

� OUTFIL can add or subtract any number from 1 to 999 to the counts in TRAILERx records.

 What's New in DFSORT 13

COUNT+n=(edit) adds n to the count and edits it using the specified edit mask or edit pattern.
COUNT+n=(to) adds n to the count and converts it to the specified BI, FI, PD, ZD, ZDF, ZDC or CSF/FS
value. COUNT-n=(edit) subtracts n from the count and edits it using the specified edit mask or edit pattern.
COUNT-n=(to) subtracts n from the count and converts it to the specified BI, FI, PD, ZD, ZDF, ZDC or
CSF/FS value. For example, if the input data set has a header record, data records and a trailer record, you can
use:

OUTFIL TRAILER1=('Count of data records is',

 COUNT-2=(TO=FS,LENGTH=7)

to get the count of the data records (rather than the count of all of the records) as a 7-byte FS value.

� The numbers generated for COUNT, TOT, MAX, MIN, AVG, SUBCOUNT, SUBTOT, SUBMIN,
SUBMAX and SUBAVG in OUTFIL TRAILERx records, and for PAGE in OUTFIL HEADERx and
TRAILERx records, can be edited with edit masks or edit patterns, or converted to BI, FI, PD, ZD, ZDF, ZDC
or CSF/FS values. In addition, hexadecimal strings (X'yy...yy' or nX'yy...yy') can be inserted in HEADERx
and TRAILERx records. For example, with:

 OUTFIL FNAMES=OUT,

 TRAILER1=(TOT=(EDIT=(III,IIT.TT)),5X'FF',COUNT=(TO=PD,LENGTH=5))

a total of 123456 appears as ' 1,234.56' in output positions 1-10, X'FFFFFFFFFF' appears in positions 11-16
and a count of 5032 is is converted to a 5-byte value of P'5032' (X'00005032C') in output positions 17-21.

� OUTFIL can generate current date constants in various forms in HEADERx and TRAILERx records, with or
without separators, using the parameters DATE, DATE=(abcd), DATENS=(abc), YDDD=(abc) and
YDDDNS=(ab), where a, b, c and d represent various parts of the date (mm, dd, yy, yyyy, ddd) and various
separators (for example, ., - or /). OUTFIL can generate current time constants in various forms in HEADERx
and TRAILERx records, with or without separators, using TIME, TIME=(abc) and TIMENS=(ab) where ab
represents 12-hour or 24-hour time and c represents various separators (for example, :, . or -).

� OUTFIL OUTREC or BUILD can create many output records from each input record in any OUTFIL data set.
You can split the input record into pieces (for example, put the first 20 bytes into the first output record and
the last 60 bytes into the second output record), use the input fields in one or more of the output records,
double or triple space in reports, and so on.

/, /.../ and n/ separators in the OUTFIL OUTREC or BUILD operand allow you to start a new record or insert
blank records. As a simple example, if you specify:

OUTFIL BUILD=(2/,C'Field 2 contains ',4,3,/,

C'Field 1 contains ',1,3)

an input data set containing these records:

AAABBB

CCCDDD

would produce an output data set containing these records:

blanks

blanks

Field 2 contains BBB

Field 1 contains AAA

blanks

blanks

Field 2 contains DDD

Field 1 contains CCC

Note that four output records are produced for each input record.

� The SAMPLE=n and SAMPLE=(n,m) parameters of OUTFIL can be used to sample records in a variety of
ways. The sample consists of the first m records in every nth interval. STARTREC=x and ENDREC=y can be

14 New in DFSORT

used with SAMPLE to select a range of records to be sampled. SAMPLE=n writes every nth record starting at
the STARTREC record and ending at or before the ENDREC record. SAMPLE=(n,m) writes m records every
nth record starting at the STARTREC record and ending at or before the ENDREC record.

Here's an example of OUTFIL sampling:

 OUTFIL FNAMES=OUT1,SAMPLE=5

 OUTFIL FNAMES=OUT2,SAMPLE=(1���,2),ENDREC=25��

 OUTFIL FNAMES=OUT3,STARTREC=23,ENDREC=75,SAMPLE=25

 OUTFIL FNAMES=OUT4,STARTREC=1��1,SAMPLE=(1��,3)

The input records written to each output data set are as follows (remember that the default for STARTREC is 1
and the default for ENDREC is the last record in the data set):

– OUT1: 1, 6, 11, and so on

– OUT2: 1, 2, 1001, 1002, 2001, 2002

– OUT3: 23, 48, 73

– OUT4: 1001, 1002, 1003, 1101, 1102, 1103, and so on

� The REPEAT=n parameter of OUTFIL lets you write each output record multiple times. The repeated records
are identical, unless the SEQNUM operand is used to create different sequence numbers for the repeated
records.

Here's an example of OUTFIL repetition:

 OUTFIL FNAMES=RPT5�,REPEAT=5���

 OUTFIL FNAMES=RPTSQ,REPEAT=2�,OVERLAY=(81:SEQNUM,8,ZD)

5000 identical copies of each input record are written to the RPT50 output data set.

20 reformatted output records are written to the RPTSQ output data set for each input record. The reformatted
output records consist of input positions 1-80 and an 8-byte ZD sequence number that starts at 1 and is incre-
mented by 1 for each output record, including the repeated records.

� The SPLITBY=n parameter of OUTFIL lets you distribute records among your OUTFIL data sets in new
ways. Whereas SPLIT writes one record at a time to each OUTFIL data set in turn, SPLITBY=n writes n
records at a time to each OUTFIL data set in turn. (SPLIT and SPLITBY=1 are equivalent.)

Here's an example of splitting records with SPLIT and SPLITBY=n:

 OUTFIL FNAMES=(PIPE1,PIPE2,PIPE3),SPLIT

 OUTFIL FNAMES=(OUT1,OUT2),SPLITBY=5�

The first record is written to the PIPE1 pipe, the second record is written to the PIPE2 pipe, the third record is
written to the PIPE3 pipe, the fourth record is written to the PIPE1 pipe, and so on.

Records 1-50 are written to the OUT1 data set, records 51-100 are written to the OUT2 data set, records
101-151 are written to the OUT1 data set, and so on.

� OUTFIL can convert fixed-length input records (for example, FB) to variable-length output records (for
example, VB). If the new FTOV operand is specified without OUTREC or BUILD, the entire fixed-length
record is used to build the variable-length record. If FTOV is used with OUTREC or BUILD, the specified
fields from the fixed-length record are used to build the variable-length record. This makes it easy to use all of
DFSORT's features when converting from FB to VB.

For example, FTOV might be used as follows:

 OUTFIL FNAMES=VAROUT,FTOV

 OUTFIL FNAMES=V1,FTOV,OUTREC=(1,2�,26:21,1�,6C'�')

For ease-of-use, VTOF can be used as an alias for CONVERT. Thus, FTOV can be used to convert from FB
to VB, and VTOF (or CONVERT) can be used to convert from VB to FB.

 What's New in DFSORT 15

� OUTFIL can remove trailing bytes such as spaces, binary zeros, or asterisks from variable-length records. The
new VLTRIM=byte operand tells DFSORT to remove trailing bytes of the specified type from variable-length
output records. The trim byte can be any value. If DFSORT finds one or more trim bytes at the end of a
variable-length output record, it removes those bytes by decreasing the length of the record. This makes it easy
to get rid of unwanted padding bytes at the end of VB records.

For example, you could use:

 OUTFIL FTOV,VLTRIM=C'�'

to convert these 17-byte FB records:

123456�����������

���3�������������

ABCDEFGHIJ�����22

�����������������

to these VB records (4-byte RDW followed by data):

Length | Data

 1� 123456

 8 ���3

 21 ABCDEFGHIJ�����22

 5 �

� OUTFIL can process short variable-length input records. Any missing bytes you specify for the output record
can be filled with a padding byte you specify.

The new VLFILL=byte operand allows DFSORT to continue processing if a variable-length record is too short
to contain all specified OUTREC or BUILD fields. The fill byte can be any value. Missing bytes in OUTREC
or BUILD fields are replaced with the specified fill byte so the filled fields can be processed. For example,
VLFILL=byte might be used as follows:

 OUTFIL FNAMES=VB1,VLFILL=X'FF',OUTREC=(1,4,15,5,52)

 OUTFIL FNAMES=FB1,CONVERT,OUTREC=(1,2�,2X,35,1�),VLFILL=C'�'

The VB1 output data set will be reformatted. Missing bytes in positions 15-19 will be replaced with FF bytes
in the reformatted variable-length output records.

The FB1 output data set will be reformatted and converted from variable-length to fixed-length. Missing bytes
in positions 1-20 or 35-44 of the variable-length input records will be replaced with asterisks in the reformatted
fixed-length output records.

When you use CONVERT or VTOF without specifying VLFILL=byte, VLFILL=C' ' is automatically used as
the default. For example, if you specify:

 OUTFIL FNAMES=CNVB,CONVERT,BUILD=(1,65)

the CNVB output data set will be reformatted and converted from variable-length to fixed-length. Missing
bytes in positions 1-65 of the variable-length input records will be replaced with spaces in the reformatted
fixed-length output records.

� OUTFIL can produce reports without the ANSI carriage control characters that indicate actions to be taken on a
printer (for example, page eject, skip a line, and so on). If the new REMOVECC operand is specified,
DFSORT "removes" the carriage control character from each record of the report. This makes it easy to
remove the printer controls when they're not needed because the output will be viewed or written to a list data
set, rather than printed. When REMOVECC is specified, the RECFM does not need to include 'A' for ANSI
(for example, it can be FB instead of FBA) and the LRECL does not need to include an extra byte for the
carriage control character.

As a simple example, if you specify the following for an input data set with 5723 records:

16 New in DFSORT

 OUTFIL FNAMES=TOTCNT,NODETAIL,

 TRAILER1=(COUNT=(M11,LENGTH=6))

TOTCNT would contain:

1��5723

where '1' is the carriage control character for a page eject and '005723' is the count of total records. If you
were passing the count to another program that expected it to start in column 1, you could specify:

 OUTFIL FNAMES=TOTCNT,NODETAIL,REMOVECC,

 TRAILER1=(COUNT=(M11,LENGTH=6))

to remove the carriage control character so TOTCNT would contain:

��5723

New INCLUDE and OMIT Features

With z/OS DFSORT V1R5 and DFSORT R14, the INCLUDE and OMIT statements, and the OUTFIL INCLUDE
and OMIT operands, are more powerful and flexible than ever.

� The maximum length of an SS (substring compare) field has been raised from 256 bytes to 32752 bytes. This
makes it easy to check for a constant anywhere in a large field or in an entire record.

Here's an example of substring compare for an entire 10000-byte record:

 INCLUDE FORMAT=SS,

 COND=(1,1����,EQ,C'Error',OR,

 1,1����,EQ,C'Warning')

� INCLUDE and OMIT can compare a binary (BI) field to a decimal constant (n or +n) as well as to a character
or hexadecimal string. This makes it much easier to specify INCLUDE and OMIT conditions for binary
numbers. For example, you can use this simple statement with a decimal constant to only include VB records
with a length less than 220 bytes:

 INCLUDE COND=(1,2,BI,LT,22�)

instead of this more complicated statement using a hexadecimal constant:

 INCLUDE COND=(1,2,BI,LT,X'��DC')

� INCLUDE and OMIT can compare appropriate fields against generated run-time date constants in the following
forms:

Operand Constant

DATE1 C'yyyymmdd'

DATE1(c) C'yyyycmmcdd'

DATE1P +yyyymmdd

DATE2 C'yyyymm'

DATE2(c) C'yyyycmm'

DATE2P +yyyymm

DATE3 C'yyyyddd'

DATE3(c) C'yyyycddd'

 What's New in DFSORT 17

Operand Constant

DATE3P +yyyyddd

DATE4 C'yyyy-mm-dd-hh.mm.ss'

Y'DATE1' Y'yymmdd'

Y'DATE2' Y'yymm'

Y'DATE3' Y'yyddd'

This makes it easy to include or omit records based on whether they contain dates equal to, lower than or
higher than the date of the run.

DATEn and DATEn(c) generate a character string (C'string') for today's date that can be used in comparisons
just like any other character string. DATEnP generates a decimal number (+n) for today's date that can be used
in comparisons just like any other decimal number. Y'DATEn' generates a Y constant (Y'string') that can be
used in date comparisons just like any other Y constant.

For example, if you used the following INCLUDE statement for a DFSORT run on January 29, 2002:

 INCLUDE COND=(21,8,ZD,GT,DATE1P)

the generated date for DATE1P would be +20020129, and the SORTOUT data set would include only those
records with a date in positions 21-28 higher than +20020129. So a record with a Z'20020130' date would be
included, whereas a record with a Z'20020129' date would not be included.

� The maximum position for the end of an INCLUDE or OMIT field has been raised from 4092 to 32752. This
makes it easy to use INCLUDE and OMIT conditions for fields almost anywhere in your records.

� The number of conditions you can use with INCLUDE and OMIT has been increased significantly. You can
use more conditions for field-to-field, field-to-constant, substring and bit logic tests. This allows you to
increase the complexity of the criteria you use to determine which records will be kept or deleted for a sort,
copy or merge application.

� You have more choices for handling "short" INCLUDE/OMIT compare fields. A short field is one where the
variable-length record is too short to contain the entire field, that is, the field extends beyond the record.

The new installation option VLSCMP=YES/NO and run-time options VLSCMP/NOVLSCMP together with
the previously available installation option VLSHRT=YES/NO and run-time options VLSHRT/NOVLSHRT
provide three levels of processing for short INCLUDE/OMIT fields in the following hierarchy:

1. If VLSCMP is in effect, DFSORT pads short INCLUDE/OMIT fields with binary zeros temporarily for
comparison testing. This allows all of the INCLUDE/OMIT comparisons in a logical expression to be
performed, even if some fields are short. Since short fields are padded with binary zeros, comparisons
involving short fields are false. Comparisons involving non-short fields can be true or false.

Note: In cases where padding of short fields with binary zeros may result in unwanted true comparisons,
you can get the result you want by adding an appropriate check of the record length to the
INCLUDE/OMIT logical expression.

2. If NOVLSCMP and VLSHRT are in effect, DFSORT treats the entire INCLUDE/OMIT logical expression
as false if any field is short. Thus, comparisons involving non-short fields are ignored if any comparison
involves a short field.

3. If NOVLSCMP and NOVLSHRT are in effect, DFSORT issues an error message, terminates and gives a
return code of 16 if a short INCLUDE/OMIT field is found. VLSCMP=NO and VLSHRT=NO are the
IBM-supplied installation defaults.

To illustrate how this works, suppose you specify:

18 New in DFSORT

 INCLUDE COND=(6,1,CH,EQ,C'1',OR,7�,2,CH,EQ,C'T1')

If a variable-length input record has a length less than 71 bytes, the field at bytes 70-71 is short.

– If you specify:

 OPTION VLSCMP

the record is included if byte 6 of the input record is C'1' or omitted if byte 6 is not C'1'. The comparison
of bytes 70-71 equal to C'T1' is false because bytes 70-71 contain either X'hh00' (for a record length of 70
bytes) or X'0000' (for a record length of less than 70 bytes). The comparison involving the non-short field
is performed even though a short field is present.

– If you specify:

 OPTION NOVLSCMP,VLSHRT

the record is omitted because any short field makes the entire logical expression false. The comparison
involving the non-short field is not performed because a short field is present.

– If you specify:

 OPTION NOVLSCMP,NOVLSHRT

DFSORT terminates because any short field results in termination.

New SUM Features

With z/OS DFSORT V1R5 and DFSORT R14, important new features have been added for the SUM statement.

� The usefulness of VLSHRT has been extended by allowing it to be used to handle "short" SUM fields. A
"short" field is one where the variable-length record is too short to contain the entire field, that is, the field
extends beyond the record. When VLSHRT is in effect, DFSORT will leave short SUM fields unsummed. In
addition short SORT, MERGE, INCLUDE and OMIT fields can be processed with VLSHRT even when a
SUM statement is present.

� The number of fields you can use with the frequently used SUM statement has been increased significantly.
This allows you to increase the number of fields you total for a sort or merge application.

� You have new ways to handle an overflow condition for SUM fields. The new OVFLO installation and
run-time option allows you to specify what you want DFSORT to do when BI, FI, PD or ZD sum fields
overflow, as follows:

– OVFLO=RC0 tells DFSORT to issue an informational message, set a return code of 0 and continue proc-
essing when sum fields overflow. The pair of records involved in the overflow is left unsummed.

– OVFLO=RC4 tells DFSORT to issue an informational message, set a return code of 4 and continue proc-
essing when sum fields overflow. The pair of records involved in the overflow is left unsummed.

– OVFLO=RC16 tells DFSORT to issue an error message, terminate and give a return code of 16 if sum
fields overflow.

New SORT and MERGE Extensions

With z/OS DFSORT V1R5 and DFSORT R14, SORT and MERGE control fields are more flexible.

� The maximum position for the end of a SORT or MERGE field has been raised from 4092 to 32752. This
makes it easy to use SORT and MERGE for fields almost anywhere in your records.

� The length for SORT and MERGE fields with AQ (alternate collating sequence) and AC (ISCII/ASCII char-

 What's New in DFSORT 19

acter) format has been raised from 256 bytes to 4092 bytes. This makes it easier to sort or merge using longer
AQ and AC fields.

Managed Tape Processing

z/OS DFSORT V1R5 and DFSORT R14 significantly improve the way tapes are processed when DFSORT can
obtain information about tape data sets from a tape management system. DFSORT can obtain such information
automatically from DFSMSrmm, but an ICETPEX routine is required to obtain the same information from other
tape management systems. Check with your tape management vendor to find out if they currently have an
ICETPEX routine available or have plans to provide one in the future.

DFSORT can use the information passed to it from DFSMSrmm or ICETPEX, when appropriate, to improve its
processing of managed tapes in the following ways:

� DFSORT can obtain accurate input filesize information for managed tapes. This can result in improved sort
performance and more accurate dynamic workspace allocation.

Additionally, you don't have to supply the input filesize to DFSORT when this information is available from
DFSMSrmm or ICETPEX. DFSORT will automatically use the filesize it obtains from DFSMSrmm or
ICETPEX to override any FILSZ=En or SIZE=En value you specify. However, you must remove any
FILSZ=n, FILSZ=Un, SIZE=n or SIZE=Un value you specify in order for DFSORT to use the filesize it
obtains from DFSMSrmm or ICETPEX.

� DFSORT can obtain input and output attributes such as RECFM, LRECL and BLKSIZE for managed tapes.
As a result, you don't have to specify these attributes explicitly for input and output tape data sets when this
information is available from DFSMSrmm or ICETPEX.

Improvements for RACF's IRRUT200 Utility

With z/OS DFSORT V1R5 and DFSORT R14, the DFSORT copy function can be used when ICEGENER is
called by a program that uses an alternate SYSIN ddname with DUMMY. This can result in improved performance
for RACF's IRRUT200 utility when ICEGENER is installed as a replacement for IEBGENER.

 64-Bit Architecture

z/OS DFSORT V1R5 can exploit 64-bit real architecture by using memory objects for sort applications, when
appropriate.

z/OS DFSORT V1R5 and DFSORT R14 can exploit 64-bit real architecture by backing storage and data spaces in
real storage above 2 gigabytes, and by using central storage instead of expanded storage for Hipersorting.

 Multiple Hiperspaces

z/OS DFSORT V1R5 and DFSORT R14 can use multiple Hiperspaces for external storage requirements, increasing
DFSORT's ability to use Hipersorting for large sort applications when sufficient system resources are available.

20 New in DFSORT

Easier Migration from Other Sort Products

z/OS DFSORT V1R5 and DFSORT R14 provide new options and features that make it easier to migrate to
DFSORT from other sort products. Many of the new and previously available migration features incorporated into
DFSORT make it operate like other sort products automatically. However, the options shown in Table 1 have
IBM-supplied installation defaults, as indicated, that you may want to change to make DFSORT operate more like
the sort product you are migrating from.

Changing an ICEMAC option changes the way DFSORT works globally by default. Specifying a run-time option
changes the way DFSORT works for a specific application.

Table 1 (Page 1 of 2). Options That Can Make Migration Easier

ICEMAC Option Run-Time Option Specifies ...

ABCODE=MSG
ABCODE=n
Default: MSG

the ABEND code for a critical error.

DYNALOC=(d,n)
Default: SYSDA,4

DYNALLOC=(d,n) the device name and maximum number of
dynamically allocated work data sets.

DYNAUTO=YES
DYNAUTO=IGNWKDD
DYNAUTO=NO
Default: YES

DYNALLOC=(d,n) whether work data sets are dynamically allo-
cated.

DYNSPC=n
Default: 256

DYNSPC=n the dynamically allocated work space when
the file size is unkn.

EQUALS=YES
EQUALS=NO
EQUALS=VBLKSET
Default: VLBLKSET

EQUALS
NOEQUALS

whether the order of records that collate iden-
tically is preserved from input to output.

EXITCK=STRONG
EXITCK=WEAK
Default: STRONG

EXITCK=STRONG
EXITCK=WEAK

whether DFSORT terminates or continues for
invalid return codes from E15/E35 user exits.

FSZEST=YES
FSZEST=NO
Default: NO

FILSZ=n
FILSZ=En
FILSZ=Un

whether DFSORT treats file sizes as exact or
estimated.

NOMSGDD=QUIT
NOMSGDD=ALL
NOMSGDD=CRITICAL
NOMSGDD=NONE
Default: QUIT

whether DFSORT terminates or continues
when the message data set is not available.

PARMDDN=ddname
Default: DFSPARM

an alternate ddname, such as $ORTPARM,
for the DFSPARM control data set.

RESET=YES
RESET=NO
Default: YES

RESET
NORESET

whether DFSORT processes a VSAM set
defined with REUSE as NEW or MOD.

 What's New in DFSORT 21

Symbols for Fields and Constants

z/OS DFSORT V1R5 and DFSORT R14 give your site a powerful, simple and flexible way to use symbols in
DFSORT and ICETOOL statements. Now you can create and use symbol mappings for your own frequently used
data.

DFSORT symbols turn DFSORT's syntax into a high level language. Symbols can help to standardize your
DFSORT applications and increase your productivity. You can use a symbol anywhere you can use a field or
constant in any DFSORT control statement or ICETOOL operator. DFSORT symbols can be up to 50 characters,
are case-sensitive and can include underscore (_) and hyphen (-) characters. Thus, you can create meaningful,
descriptive names for your symbols, such as Price_of_Item (or Price-of-Item) making them easy to remember, use
and understand.

Field symbols define a field in terms of its position, length and format. Constant symbols define a field in terms of
its literal, numeric or bit value. Once you make a symbol available, you free yourself from the sometimes tedious
process of figuring out its position, length, format or value. No more confusion over offsets versus positions and
whether to add 4 for the RDW or not. No more recoding positions in statements when you rearrange fields in your
data.

To give you a quick idea of how easy it is to use DFSORT symbols, let's look at the JCL and control statements
for a simple DFSORT job tha uses symbols for fields and constants.

Table 1 (Page 2 of 2). Options That Can Make Migration Easier

ICEMAC Option Run-Time Option Specifies ...

SORTLIB=SYSTEM
SORTLIB=PRIVATE
Default: PRIVATE

whether DFSORT searches a system or
private library for tape work data set sort or
Conventional merge modules.

SZERO=YES
SZERO=NO
Default: YES

SZERO
NOSZERO

whether DFSORT treats zero values as signed
or unsigned.

VLLONG=YES
VLLONG=NO
Default: NO

VLLONG
NOVLLONG

whether DFSORT truncates long variable-
length output records.

VLSCMP=YES
VLSCMP=NO
Default: NO

VLSCMP
NOVLSCMP

whether DFSORT pads short variable-length
compare fields.

VSAMEMT=YES
VSAMEMT=NO
Default: YES

VSAMEMT
NVSAMEMT

whether DFSORT accepts an empty VSAM
input data set.

VSAMIO=YES
VSAMIO=NO
Default: NO

VSAMIO
NOVSAMIO

whether DFSORT allows a VSAM data set
defined with REUSE to be sorted in-place.

ZDPRINT=YES
ZDPRINT=NO
Default: YES (V1R5)
 NO (R14)

ZDPRINT
NZDPRINT

whether DFSORT produces printable numbers
from positive summed ZD fields.

22 New in DFSORT

Here's a DFSORT symbols data set named ACCOUNT.SYMBOLS you might have created to map the fields and
constants for your ACCOUNT data set (note that the statements shown here only cover a few of the many features
of DFSORT's easy to use and flexible symbol mapping syntax).

ACCOUNT.SYMBOLS data set:

� Fields for ACCOUNT data set records.

� '�' for position means use next location.

� '=' for position, length or format means use corresponding value

� from the previous field.

Full_Name,1,4�,CH

First_Name,=,2�,CH Subfield of Full_Name

Last_Name,�,=,= Subfield of Full_Name

Account_Number,�,3,PD

SKIP,2 Skip 2 unused bytes

Balance,�,6,ZD

Level1,5���� Decimal constant for Balance

Penalty,-1�� Decimal constant for Balance

Type,�,8,CH

Loan,'LOAN' Character constant for Type

Check,'CHECKING' Character constant for Type

Here's the JCL and control statements for a DFSORT job that uses the symbols in ACCOUNT.SYMBOLS:

//EXAMP JOB ...

//RUNIT EXEC PGM=ICEMAN

//�� SYMNAMES POINTS TO ONE OR MORE SYMBOL DATA SETS.

//SYMNAMES DD DSN=ACCOUNT.SYMBOLS,DISP=SHR

//�� SYMNOUT LISTS THE ORIGINAL SYMBOL STATEMENTS AND

//�� THE SYMBOL TABLE DFSORT BUILDS FROM THEM.

//SYSOUT DD SYSOUT=�

//SORTIN DD DSN=ACCOUNT,DISP=SHR

//SORTOUT DD ...

//SYSIN DD �

 INCLUDE COND=((Type,EQ,Loan,AND,Balance,GT,Level1),OR,

 (Type,EQ,Check,AND,Balance,LE,Penalty))

 SORT FIELDS=(Full_Name,A,Type,A,Account_Number,D)

/�

Symbols for RACF, DFSMSrmm and DCOLLECT

To increase your productivity, IBM's DFSORT, RACF and DFSMS teams have already created DFSORT symbol
mappings and sample jobs for data associated with RACF, DFSMSrmm and DCOLLECT. These mappings and
jobs further enhance ICETOOL's usefulness as the analysis and reporting tool of choice for data associated with
these products:

 � RACF

RACF's RACFICE package contains the tools necessary to create reports using the output of IRRDBU00 and
IRRADU00 as input to DFSORT's ICETOOL utility. RACFICE includes DFSORT Symbol mappings for
IRRDBU00 and IRRADU00. You can download this package from the RACFICE home page at:

http://www.ibm.com/servers/eserver/zseries/zos/racf/racfice.html

 � DFSMSrmm

 What's New in DFSORT 23

DFSMSrmm provides you with symbols you can use in DFSORT and ICETOOL jobs to create reports for
DFSMSrmm-managed resources. These symbol mappings are available in SYS1.MACLIB after SMP/E
APPLY processing, as members EDGACTSY, EDGEXTSY, and EDGSMFSY.

 � DCOLLECT

You can download the DFSORT Symbols for DCOLLECT from:

ftp://ftp.software.ibm.com/storage/dfsort/mvs/symbols/

 VSAM Processing

z/OS DFSORT V1R5 and DFSORT R14 give you new ways to process VSAM data sets as follows:

� The new RESET=YES installation option and RESET run-time option tells DFSORT to process a VSAM
output data set defined with REUSE as a NEW data set. The high-used RBA is reset to zero and the output
data set is effectively treated as an initially empty cluster. RESET=YES is the IBM-supplied installation
default.

The new RESET=NO installation option and NORESET run-time option tells DFSORT to process a VSAM
output data set defined with REUSE as a MOD data set. The high-used RBA is not reset and the output data
set is effectively treated as an initially non-empty cluster.

� The new VSAMEMT=YES installation option and VSAMEMT run-time option tells DFSORT to accept an
empty VSAM input data set and process it as having zero records. VSAMEMT=YES is the IBM-supplied
installation default.

The new VSAMEMT=NO installation option and NVSAMEMT run-time option tells DFSORT to issue an
error message, terminate and give a return code of 16 if an empty VSAM data set is found.

� The new VSAMIO=YES installation option and VSAMIO run-time option tells DFSORT to allow a sort appli-
cation to use the same VSAM data set for input and output, provided that RESET is in effect and the VSAM
data set was defined with REUSE. The VSAM data set is processed as NEW for output and will contain the
sorted input records, that is, it will be sorted in-place.

The new VSAMIO=NO installation option and NOVSAMIO run-time option tells DFSORT to issue an error
message, terminate and give a return code of 16 if the same VSAM data set is specified for input and output.
VSAMIO=NO is the IBM-supplied installation default.

� DFSORT supports the VSAM extended addressability function for extended format VSAM data sets, which
provides the capability of VSAM data sets larger than four gigabytes.

HFS File Processing

z/OS DFSORT V1R5 and DFSORT R14 support Hierarchical File System (HFS) files for input and output.
DFSORT uses BSAM to access HFS files and is thus subject to all of the capabilities and restrictions that entails.
Here's an example of a DFSORT job to sort HFS files.

24 New in DFSORT

//EXAMP JOB ...

//SORTHFS EXEC PGM=ICEMAN

//SYSOUT DD SYSOUT=�

//SORTIN DD PATH='/user/hfs.inp1.txt',PATHOPTS=ORDONLY,

// LRECL=8�,BLKSIZE=24�,RECFM=FB,FILEDATA=TEXT

// DD PATH='/user/hfs.inp2.txt',PATHOPTS=ORDONLY,

// LRECL=8�,BLKSIZE=8�,RECFM=F,FILEDATA=TEXT

//SORTOUT DD PATH='/user/hfs.ut.txt',PATHOPTS=OWRONLY,

// LRECL=8�,BLKSIZE=8�,RECFM=F,FILEDATA=TEXT

//SYSIN DD �

 SORT FIELDS=(1�,8,CH,A)

/�

Larger Tape Block Sizes

z/OS DFSORT V1R5 and DFSORT R14 can use tape data sets with block sizes greater than 32760 bytes for input
and output, providing improved performance and tape utilization.

The installation SDB option has been expanded to allow selection of system-determined optimum block sizes
greater than 32760 bytes for output tape data sets. SDB can also be used as a run-time option. If you want to use
system-determined block sizes for DASD and tape output data sets, specify one of the following values:

� SDB=LARGE if you want DFSORT to select tape output block sizes greater than 32760 bytes.

� SDB=YES or SDB=SMALL if you want DFSORT to select tape output block sizes up to 32760 bytes.

� SDB=INPUT if you want DFSORT to select tape output block sizes greater than 32760 bytes only if the tape
input block size is greater than 32760 bytes. SDB=INPUT is the IBM-supplied installation default.

If you don't want DFSORT to use system-determined block sizes, specify SDB=NO (not recommended).

Even with SDB=LARGE or SDB=INPUT, DFSORT will not select a tape output block size greater than the
BLKSZLIM in effect, so you may need to specify a value like BLKSZLIM=1G in your output DD statement.
Here's an example of a DFSORT job that selects system-determined block sizes greater than 32760 bytes for
SORTOUT and OUTFIL tape output data sets:

//EXAMP JOB ...

//SDBOUT EXEC PGM=ICEMAN

//SYSOUT DD SYSOUT=�

//SORTIN DD DSN=INPUT.DATA,DISP=SHR

//SORTOUT DD DSN=OUTPUT1,DISP=(NEW,KEEP),UNIT=359�,VOL=SER=�75834,

// LABEL=(,SL),BLKSZLIM=1G

//OUT2 DD DSN=OUTPUT2,DISP=(NEW,KEEP),UNIT=359�,VOL=SER=�75835,

// LABEL=(,SL),BLKSZLIM=1G

//SYSIN DD �

 OPTION SDB=LARGE

 SORT FIELDS=(1�,8,CH,A)

 OUTFIL FNAMES=OUT1,OMIT=(22,3,CH,EQ,C'FLY')

/�

DFSORT's ICEGENER, like IEBGENER, will use the parameters SDB=LARGE, SDB=YES, SDB=SMALL,
SDB=INPUT and SDB=NO if you specify them. Here's an example of an IEBGENER job that selects a system-
determined block size greater than 32760 bytes for a SYSUT2 tape output data set:

 What's New in DFSORT 25

//EXAMP JOB ...

//SDBOUT EXEC PGM=IEBGENER,PARM='SDB=LARGE'

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=INPUT.DATA,DISP=SHR

//SYSUT2 DD DSN=OUTPUT3,DISP=(NEW,KEEP),UNIT=359�,VOL=SER=�75836,

// LABEL=(,SL),BLKSZLIM=1G

//SYSIN DD DUMMY

This same job can use DFSORT's more efficient ICEGENER facility if your site has installed ICEGENER to be
invoked by the name IEBGENER. Alternatively, you can specify PGM=ICEGENER to ensure that ICEGENER is
used.

Long Variable-Length Output Records

z/OS DFSORT V1R5 and DFSORT R14 give you new ways to handle "long" variable-length output records. A
long output record is one whose length (in the RDW) is greater than the LRECL of the SORTOUT or OUTFIL data
set it is to be written to.

� The new VLLONG=YES installation option and VLLONG run-time option tells DFSORT to truncate long
variable-length output records to the LRECL of the SORTOUT or OUTFIL data set. VLLONG should not be
used unless you want the data at the end of long variable-length output records to be truncated for your
DFSORT application; inappropriate use of VLLONG can result in unwanted loss of data.

� The new VLLONG=NO installation option and NOVLLONG run-time option tells DFSORT to issue an error
message, terminate and give a return code of 16 if a long variable-length output record is found.
VLLONG=NO is the IBM-supplied installation default.

 Signed/Unsigned Zero

z/OS DFSORT V1R5 and DFSORT R14 let you treat numeric -0 and +0 values as signed (that is, different) or
unsigned (that is, the same) for collation, comparisons, editing, conversions, minimums and maximums.

� The new SZERO=YES installation option and SZERO run-time option tells DFSORT to treat numeric zero
values as signed for INCLUDE, INREC, MERGE, OMIT, OUTFIL, OUTREC and SORT statement processing.
-0 and +0 are treated as different values, that is, -0 is treated as a negative value and +0 is treated as a positive
value. SZERO=YES is the IBM-supplied installation default.

� The new SZERO=NO installation option and NOSZERO run-time option tells DFSORT to treat numeric zero
values as unsigned for INCLUDE, INREC, MERGE, OMIT, OUTFIL, OUTREC and SORT statement proc-
essing. The new UZERO option tells ICETOOL to treat numeric zero values as unsigned for DISPLAY,
OCCUR, SELECT and UNIQUE operator processing (overriding the default of treating zero values as signed
for these operators). -0 and +0 are treated as the same value, that is, -0 and +0 are both treated as positive
values.

Time-of-Day Installation Options Control

z/OS DFSORT V1R5 and DFSORT R14 make it easy to control the resources you allow DFSORT applications to
use based on the day and time they run.

Four new time-of-day installation modules (ICETD1-4) can be used independently to activate different sets of
installation defaults on different days at different times. Each environment installation module (ICEAM1-4) can
enable one or more time-of-day installation modules.

26 New in DFSORT

This capability allows new levels of control for DFSORT installation defaults. For example, you could use the
ICEMAC statements below to set up larger DSA and TMAXLIM limits for batch program-invoked DFSORT appli-
cations that run off-shift (6:00pm-5:59am) during the week, and all weekend:

 ICEMAC INV,ENABLE=TD1,SVC=(,ALT),DSA=48

 ICEMAC TD1,WKDAYS=(18��,559),WKEND=ALL,SVC=(,ALT),DSA=96,TMAXLIM=83886�8

Here's what these two ICEMAC calls do:

� ICEMAC INV,ENABLE=TD1,SVC=(,ALT),DSA=48

INV creates ICEAM2, the batch program-invoked installation defaults module.

ENABLE=TD1 enables ICETD1 for ICEAM2, that is, for batch program-invoked applications. Any or all of
ICETD1-4 can be enabled for ICEAM2 in any order.

SVC=(,ALT) specifies that the alternate SVC is to be used.

DSA=48 sets the DSA limit to 48 megabytes, overriding the IBM-supplied default for DSA of 64 megabytes
(V1R5) or 32 megabytes (R14).

The IBM-supplied defaults are used for all other installation options. For TMAXLIM, the IBM-supplied
default is 6 megabytes (V1R5) or 4 megabytes (R14).

� ICEMAC TD1,WKDAYS=(1800,559),WKEND=ALL,SVC=(,ALT),DSA=96, TMAXLIM=8388608

TD1 creates ICETD1, the first time-of-day installation defaults module. ICETD1 is enabled for ICEAM2.

WKDAYS=(1800,559) specifies that ICETD1 will be activated for DFSORT applications that start on Monday
through Friday between 6:00pm (1800) and 5:59am (559).

WKEND=ALL specifies that ICETD1 will be activated for DFSORT applications that start any time on Sat-
urday or Sunday.

SVC=(,ALT) specifies that the alternate SVC is to be used.

DSA=96 sets the DSA limit to 96 megabytes, overriding the 48 megabyte limit for ICEAM2, whenever
ICETD1 is activated.

TMAXLIM=8388608 sets the TMAXLIM limit to 8 megabytes, overriding the 6 megabyte (V1R5) or 4 mega-
byte (R14) limit for ICEAM2, whenever ICETD1 is activated.

The IBM-supplied defaults are used for all other installation options. However, note that ICETD1 can be used
to override any set of installation options you like for particular day and time ranges.

By setting your ICEAM1-4 and ICETD1-4 defaults appropriately, you can fine-tune DFSORT's resource usage for
special situations at your site.

More Work Data Sets

z/OS DFSORT V1R5 and DFSORT R14 raise the number of JCL and dynamically allocated work data sets you can
use from 100 to 255. Any valid ddname of the form SORTWKdd can be used for work data sets. Of course,
SORTWK00-99 can still be used. But so can ddnames like SORTWK3B, SORTWK#5 and SORTWKXY.

The new limit of 255 work data sets and the new ddnames increase significantly the amount of data you can sort in
a single application. Use more work data sets only when you need them for extremely large sorts.

 What's New in DFSORT 27

More Merge Data Sets

z/OS DFSORT V1R5 and DFSORT R14 raise the number of input data sets you can use from 16 to 100. The new
limit of 100 increases significantly the amount of data you can merge in a single application.

Simplified Installation and Customization

With z/OS DFSORT V1R5 and DFSORT R14, installation and customization is easier than ever.

All features can be installed together, and the mode of operation (resident or nonresident) can be chosen at IPL
time. The number of FMIDs has been reduced from 10 to 3 and the number of libraries required to install
DFSORT has been reduced from 40 to 26. These changes eliminate many decisions and speed up installation and
customization.

IBM's DFSORT and DFSMS teams have simplified the process of replacing IEBGENER with DFSORT's popular
ICEGENER facility. You only need to apply DFSMS PTF UW48193 to supply an alias of "IEBGENR" for
IEBGENER, and place ICEGENER with an alias of "IEBGENER" ahead of IEBGENER in the system's search
order for programs. This new process removes the need to monitor IEBGENER PTFs relative to ICEGENER.

Improvements for Copy, Merge and ICEGENER Applications

With z/OS DFSORT V1R5 and DFSORT R14, storage above 16MB virtual can be used for copy, merge and
ICEGENER applications. This provides virtual storage constraint relief and may provide improved performance for
these applications.

Copy and merge modules reside above 16MB virtual. This provides additional virtual storage constraint relief.

Option-in-effect messages are produced for copy and merge applications as well as for sort applications. This
makes it easier to determine the options used for a particular run.

Incomplete Spanned Records

z/OS DFSORT V1R5 and DFSORT R14 give you new ways to handle incomplete records in spanned data sets.
The new SPANINC installation and run-time option allows you to specify what you want DFSORT to do if it
detects incomplete spanned records, as follows:

� SPANINC=RC0 tells DFSORT to issue an informational message, set a return code of 0 and eliminate all
incomplete spanned records it detects. Valid records are recovered.

� SPANINC=RC4 tells DFSORT to issue an informational message, set a return code of 4 and eliminate all
incomplete spanned records it detects. Valid records are recovered.

� SPANINC=RC16 tells DFSORT to issue an error message, terminate and give a return code of 16 if an incom-
plete spanned record is found.

28 New in DFSORT

LRECL Padding and Truncation

z/OS DFSORT V1R5 and DFSORT R14 give you new ways to handle a SORTIN LRECL smaller than the
SORTOUT LRECL (LRECL padding) and a SORTIN LRECL larger than the SORTOUT LRECL (LRECL trun-
cation). The new PAD and TRUNC installation and run-time options allow you to specify what you want
DFSORT to do when the SORTIN or SORTINnn LRECL is different from the SORTOUT LRECL, as follows:

� PAD=RC0 tells DFSORT to issue an informational message, set a return code of 0 and continue processing
when the SORTOUT LRECL is larger than the SORTIN or SORTINnn LRECL.

� PAD=RC4 tells DFSORT to issue an informational message, set a return code of 4 and continue processing
when the SORTOUT LRECL is larger than the SORTIN or SORTINnn LRECL.

� PAD=RC16 tells DFSORT to issue an error message, terminate and give a return code of 16 if the SORTOUT
LRECL is larger than the SORTIN or SORTINnn LRECL.

� TRUNC=RC0 tells DFSORT to issue an informational message, set a return code of 0 and continue processing
when the SORTOUT LRECL is smaller than the SORTIN or SORTINnn LRECL.

� TRUNC=RC4 tells DFSORT to issue an informational message, set a return code of 4 and continue processing
when the SORTOUT LRECL is smaller than the SORTIN or SORTINnn LRECL.

� TRUNC=RC16 tells DFSORT to issue an error message, terminate and give a return code of 16 if the
SORTOUT LRECL is smaller than the SORTIN or SORTINnn LRECL.

 What's New in DFSORT 29

	What's New in DFSORT
	Introduction
	Larger Fields and Constants
	New Free Form Formats
	New ICETOOL Features
	New Reformatting Features (INREC, OUTREC, OUTFIL)
	New OUTFIL-Only Features
	New INCLUDE and OMIT Features
	New SUM Features
	New SORT and MERGE Extensions
	Managed Tape Processing
	Improvements for RACF's IRRUT200 Utility
	64-Bit Architecture
	Multiple Hiperspaces
	Easier Migration from Other Sort Products
	Symbols for Fields and Constants
	Symbols for RACF, DFSMSrmm and DCOLLECT
	VSAM Processing
	HFS File Processing
	Larger Tape Block Sizes
	Long Variable-Length Output Records
	Signed/Unsigned Zero
	Time-of-Day Installation Options Control
	More Work Data Sets
	More Merge Data Sets
	Simplified Installation and Customization
	Improvements for Copy, Merge and ICEGENER Applications
	Incomplete Spanned Records
	LRECL Padding and Truncation

