
Chapter 11
SQL*Loader

SQL *Loader is a utility program that will read flat files and insert the data they contain into
database tables as specified by a control file. The Control File is a file you write specifying
the name(s) of the input file(s), the name(s) of the table(s), and other parameters
specifying the file format, etc. SQL*Loader will accept data in either fixed or variable
record length formats. A file referenced in the control file may contain data that may be
inserted into multiple tables.

SQL*Loader is useful if you receive electronic submissions of data from different sources
and/or in different formats. It is especially useful to load external data into a data
warehouse. It allows you to check data from validity and filter out data you may not want
inserted into the tables. You can add rows to existing tables or totally replace the data in
an existing table. SQL*Loader is run from the host system prompt, not from within SQL
unless you use ! to access the operating system.

SQL*Loader Files

Figure 1 illustrates the files used by SQL*Loader.

Figure 1
SQL*Loader File And Table Relations

Chapter 11 Using SQL Loader Page 2

The table below describes each of the files depicted in the diagram above.

File Description

INPUT

The Input File contains the data that you would like to load into the tables.
You can specify more than one Input File in the Control File. The Input
File may contain records in either a fixed or variable format.

CONTROL

The Control File specifies the Input File(s) and Table(s) to be used in the
load. The Control File also specifies several parameters that tell
SQL*Loader the record format, items to be filtered, and how the data are
to be added to the table. The precise format of the Control File is shown
below and several examples are illustrated later in this chapter.

LOG

The Log File provides a summary of the SQL*Load describing records
loaded, records rejected, and errors that occurred. It is an output file
created by SQL*Loader.

BAD

The Bad File is an output file created by SQL*Loader containing records
that could not be added to the table because either the format of the
record wasn’t valid or the record violated an integrity constraint placed on
the table.

DISCARD

The Discard File is an output file created by SQL*Loader that contains
records that violate a filter defined in the Control File.

The Control File

The Control File is created in the operating system with a text editor such as pico or vi.
The file should be given a name that relates it to the table(s) you are loading. If you are
loading the EMP table with a fixed file format, you might call the control file emp_fixed.ctl.
The structure of the Control File is shown below. The items you enter into the control file
are shown in bold. The items in bold italics require you to substitute an actual value for the
item.

PATHS

OPTIONS (DIRECT = TRUE, SKIP = N, LOAD = N, ERRORS = N)

 The Conventional path is the default. It loads rows using all
safeguards. The Direct Path does not enforce all table integrity
constraints but loads data much faster than the conventional path.

 Supplying a value for N in Skip will skip n number of rows in the
Infile.

 Supplying a value for N in Load will load n records from Infile.
 Supplying a value for N in Errors will cause SQL*Loader to terminate

if n errors are generated during the load.

Unrecoverable (writing to the REDO Log is turned off (Direct Only))

LOAD DATA

Chapter 11 Using SQL Loader Page 3

Supply the names of the Input File (Infile), the Bad File and the Discard
File. You are required to provide an Infile name. If you don’t want to
save the records that are rejected, do not use Badfile or Discardfile.

Infile filename
Badfile filename (optional)
Discardfile filename (optional)

The Loading Methods available are: INSERT, APPEND, REPLACE, or TRUNCATE.
If you use INSERT, the table must not contain rows or an error will be
generated. If you use APPEND, rows will be added to an existing table.
REPLACE and TRUNCATE are similar to one another as both delete all data
from a table and then insert the data defined in Infile. TRUNCATE will
deallocate extents after deleting data but DELETE will not.

INTO TABLE tablename

Use the WHEN condition to filter out data you don’t want inserted into the
table. The WHEN condition is used to catch rows that have a valid format
and don’t violate any database constraints, but you still don’t want the
data loaded.

WHEN condition (optional)

For fixed record data file formats use the following structure. Replace
actual column names in the table with Col1, Col2, etc. The data for the
columns should be located at certain column positions within the Infile.
In position(x,y) statement, the x refers to the starting column position
and the y refers to the ending column position. Normally you would
specify the data type as CHAR even if the data type in the table is
different. The database will properly convert the data value from the
Infile.

(Col1 position(x,y) char or integer external or date,
 Col2 position(x,y) char or integer external or date,
 e
)
tc.

For variable record data file formats you must have a character (or
characters) that separate data items. Writing the column statements for
variable record formats is shown below with fields separated by either a
comma or “Whitespace”.

Fields Terminated by “,” or Whitespace
(Col1 char or integer external or date,
 Col2 char or integer external or date,
 Col3 char or integer external or date
)

Chapter 11 Using SQL Loader Page 4

SQL*Loader Data Flows

SQL*Loader reads the input data file and first checks it for a valid format. If an error is
found in the format (for example a character is found where a number should be) the
record is inserted into the Bad File. If the record has a valid format the WHEN condition is
checked. If the record fails the WHEN condition, it is written to the Discard File. Finally,
the record is checked against integrity constraints enforced on the table. If the record is
not valid, it is written to the Bad File. If the record meets all criteria, it is inserted into the
table. Figure 2 shows the flow of a record in SQL*Loader.

Figure 2
Data Flow For SQL*Loader

Executing SQL*Loader

SQL*Loader is run from the unix prompt. You must supply a login and a password for an
account with privileges to use SQL*Loader as shown below:

Chapter 11 Using SQL Loader Page 5

[24]> sqlldr userid=system/manager

Press enter and you will be prompted for a control file. Enter the name of the control file
and SQL*Loader will execute.

If you are in SQL, you can run SQL*Loader by accessing the host with the exclamation
point as shown below:

SQL> !sqlldr userid=system/manager

Fixed Format Data Files

The EMP and DEPARTMENT tables are created with the statements below. There are
constraints placed on the EMP table for a Primary Key, a Salary Limit, and a Foreign Key
as shown.

create table department
(Dept Varchar2(4) primary key,
 DeptName varchar2(20));

insert into department values ('ACC','Accounting');
insert into department values ('MIS','Manage Info Sys');

create table emp
(ID number(3),
 Name varchar2(20,
 Salary number(6),
 Dept varchar2(4),
 constraint emp_pk_const primary key (ID),
 constraint emp_sal_const check (salary < 100000),
 constraint emp_dept_fk_const foreign key (Dept) references department);

The data file, named emp_fixed.dat, shown below contains data that are to be inserted into
an empty EMP table.

60 Jim 50000 ACC
61 John 60000 MGT
67 James 50000 MIS
63 Jack 160000 MIS
64 Joan 70000 FIN
65 Jake 10000 MIS
66 Jim 40000 MIS
67 Frank 75000 ACC
68 Jack xxxx ACC

The data are in a fixed format. The ID’s are contained in columns 1 through 2, the Names
are located in columns 5 through 13, the Salaries are contained in columns 13 through 20,
and the Dept’s are in columns 21 through 23. Problems exist with the data in the
highlighted rows. Employees 61 and 64 belong to departments that are not in the
DEPARTMENT table which violates a foreign key constraint. Employee 63 earns more

Chapter 11 Using SQL Loader Page 6

than the $100,000 salary constraint will allow. Employee 67 is listed twice violating a
primary key constraint. The data format for employee 68’s salary is character instead of
numeric. The records with errors should be caught by SQL*Loader.

The following conditions are placed on the SQL*Loader run:

 The file should be loaded using the conventional path.
 The Table should be loaded using INSERT (i.e. the table must be empty).
 Any employee named Jack should not be inserted into the table.
 Rejected records should be listed in Bad and Discard files.

The contents of the Control File (named emp_fixed.ctl) is shown below. A log will be
created automatically named emp_fixed.log.

Load data
 Infile ‘emp_fixed.dat’
 Badfile ‘emp_fixed.bad’
 Discardfile ‘emp_fixed.dis’
INSERT
INTO TABLE jerry.emp
WHEN Name != ‘Jack’
(Id position(1:2) char,
Name position(5:12) char,
Salary position(13:20) char,
Dept position(21:23) char)

Figure 3 shows the error that will be generated if you try to use the insert mode and data
reside in the target table.

Figure 3
Using Insert Mode On A Populated Table

Chapter 11 Using SQL Loader Page 7

After removing the data from the EMP table, SQL*Loader is run again. As can been seen
in Figure 4, the four rows “good” rows of data are inserted.

Figure 4
SQL*Loader Run

Figure 5 below shows the contents of the BAD and DISCARD files after the SQL*Loader
run. Jack has been filtered out in the WHEN clause so his records are contained in the
Discard File.

Figure 5
BAD And DISCARD File Contents

The contents of the emp_fixed.log file are shown below. The log provides a summary of
the run including a description of the reason for rejecting records.

Chapter 11 Using SQL Loader Page 8

SQL*Loader: Release 8.1.7.0.0 - Production on Thu May 1 14:35:15 2003

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Control File: emp_fixed.ctl
Data File: emp_fixed.dat
 Bad File: emp_fixed.bad
 Discard File: emp_fixed.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional

Table JERRY.EMP, loaded when NAME != 0X4a61636b(character 'Jack')
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
ID 1:2 2 CHARACTER
NAME 5:13 9 CHARACTER
SALARY 13:20 8 CHARACTER
DEPT 21:23 3 CHARACTER

Record 4: Discarded - failed all WHEN clauses.
Record 9: Discarded - failed all WHEN clauses.
Record 10: Discarded - failed all WHEN clauses.
Record 2: Rejected - Error on table JERRY.EMP.
ORA-02291: integrity constraint (JERRY.EMP_DEPT_FK_CONST) violated - parent key not found

Record 5: Rejected - Error on table JERRY.EMP.
ORA-02291: integrity constraint (JERRY.EMP_DEPT_FK_CONST) violated - parent key not found

Record 8: Rejected - Error on table JERRY.EMP.
ORA-00001: unique constraint (JERRY.EMP_PK_CONST) violated

Table JERRY.EMP:
 4 Rows successfully loaded.
 3 Rows not loaded due to data errors.
 3 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 2048 bytes(64 rows)
Space allocated for memory besides bind array: 0 bytes

Total logical records skipped: 0
Total logical records read: 10
Total logical records rejected: 3
Total logical records discarded: 3

Run began on Thu May 01 14:35:15 2003
Run ended on Thu May 01 14:35:24 2003

Elapsed time was: 00:00:08.75
CPU time was: 00:00:00.06

Using The Direct Path

The Direct Path data load option will instruct SQL*Loader to disable integrity constraints on
the table, load the data, and then attempt to enable the constraints. If data in the table

Chapter 11 Using SQL Loader Page 9

violate the constraints, they cannot be enforced and will remain in a disabled state. The
emp_fixed.ctl control file is modified as shown below to use the direct path and preclude
logging to the Redo Log Buffer.

OPTIONS (direct = true)
Unrecoverable
Load data
 Infile ‘emp_fixed.dat’
 Badfile ‘emp_fixed.bad’
 Discardfile ‘emp_fixed.dis’
INSERT
INTO TABLE jerry.emp
WHEN Name != ‘Jack’
(Id position(1:4) char,
Name position(5:12) char,
Salary position(13:20) char,
Dept position(21:23) char)

In Figure 6, the Delete command removes all of the data from EMP so the INSERT
dataload mode can be used. SQL*Loader is run with the direct path option and
unrecoverable in effect.

Figure 6
SQL*Loader Run Using The Direct Path

Figure 7 shows the data that reside in EMP after the SQL*Loader run. The data violate the
integrity constraints that were initially placed on the table. A view from user_constraints
shows that some constraints could not be validated and are left in a disabled state. Future
Inserts and Updates on EMP will not be valided.

Chapter 11 Using SQL Loader Page 10

Figure 7
Results of SQL*Loader With The Direct Path Option

Variable Format Data Files

Sometimes data files arrive in a format in which the data are separated by some character
such as a comma or white space. The data from a variable length file, called emp_var.dat
are show below. The data items in the file are separated by commas and there is no
comma at the end of a line. These data are to be added to the EMP table through
SQL*Loader. The highlighted lines indicate records that will not be validated by the
constraints on the EMP table.

70,Sue S,45000,MIS
71,Sandy A,55000,ACC
72,Jack,50000,MIS
72,Sally,90000,MIS
74,Sammy,175000,FIN
75,Sarah,80000,MIS
76,Randy,50000,MIS
78,Ralph,120000,ACC

The EMP table is created with all the constraints enabled. Two rows are inserted into the
EMP table. The control file, called emp_var.ctl should be created according to the
following conditions:

 The file should be loaded using the conventional path.
 The Table should be loaded using APPEND (i.e. the table need not be

empty).
 Any employee earning a Salary of 45000 should not be inserted into the

table.
 Rejected records should be listed in Bad and Discard files.

The contents of the control file are shown below. The 45000 value in the When clause is

Chapter 11 Using SQL Loader Page 11

in single quotes because it is listed as a Char type below. The clause “trailing nullcols”
indicates that additional unused columns could exist in the input file. Trailing nullcols is not
necessary in this example.

Load data
 infile 'emp_var.dat'
 badfile 'emp_var.bad'
 discardfile 'emp_var.dis'
APPEND
into table jerry.emp
when Salary != ‘48000’
Fields terminated by ','
trailing nullcols
(id,
name,
salary,
dept
terminated by whitespace)

Figure 8 shows that two rows exist in the EMP table before the data are loaded. The
emp_var.ctl file from above is loaded into the program.

Figure 8
Loading Variable Format Data

Figure 9 shows that the data are added to the EMP table because the Append mode was
used. The Bad file contains the three records that violated table constraints and the
Discard file contains the record that violated the When clause.

Chapter 11 Using SQL Loader Page 12

Figure 9
Table and File Contents After The Variable File Load

Loading Multiple Tables

SQL*Loader allows you construct parameters to load data into more than one table within
a single control file. The INTO TABLE command can be written multiple times with
different location specifications in the INFILE. The following data are contained in the
emp_fixed.dat file. The first four columns identify rows to be inserted into the EMP table.
The last two columns identify rows to be inserted into the DEPARTMENT table. Problems
exist in the highlighted rows.

60 Jim 50000 ACC MGT Management
61 John 60000 MGT MIS Money System
67 James 50000 MIS
63 Jack 160000 MIS
64 Joan 70000 FIN
65 Jake 10000 MIS
66 Jim 40000 MIS
67 Frank 75000 ACC
68 Jack xxxx ACC

The control file, called emp_fixed.ctl, is shown below. The Infile identifies the file depicted
immediately above. Only one Bad File and one Discard file are specified. The
DISCARDMAX value limits the number of records that can be discarded before causing
the load to terminate. DISCARDMAX can be used with any of the control files illustrated in
this chapter. The data are to be loaded in the APPEND mode. The mode can be specified
only once. You can’t use the INSERT mode for the EMP table and the APPEND mode for
the DEPARTMENT table. The INSERT INTO table_name clause is defined for the EMP
table and then repeated for the DEPARTMENT table. Each INSERT INTO clause
identifies where the records are located in the Infile.

Chapter 11 Using SQL Loader Page 13

load data
 infile 'emp_fixed.dat'
 badfile 'emp_fixed.bad'
 discardfile 'emp_fixed.dis'
append
into table jerry.emp
when Name != 'Jack'
(id position (01:02) char,
name position (05:13) char,
salary position (13:20) char,
dept position (21:23) char)
into table jerry.department
(dept position (27:29) char,
 deptname position (32:41) char)

Figure 10 shows the contents of the DEPARTMENT table. The EMP table also contains
two rows. The emp_fixed.ctl control file defined above controls the loading of the data file
shown above.

Figure 10
Loading Data Into Two Table With One Control File

After the data are loaded, the EMP table and the DEPARTMENT table have the new
records that are validated by the constraints. The contents of both the EMP and
DEPARTMENT tables are shown in Figure 11. The records violating constraints are
shown in the Bad file in Figure 12. The Discard file contains the records with employees
named Jack which have been filtered by the When clause.

Chapter 11 Using SQL Loader Page 14

Figure 11
Tables After The Multiple Table Load

Figure 12
Rejected Record In A Multiple Table Load

	Data Flow For SQL*Loader

