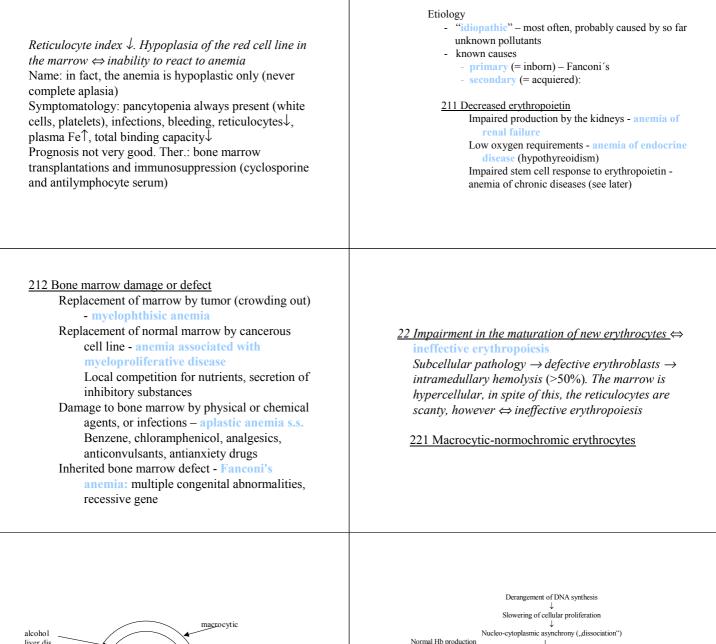
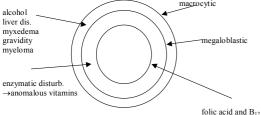
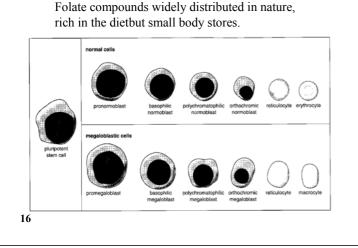


Acute		
Chronic		
Intravascular hemolysis, as a result of:		
Hereditary factors, resulting in:	Defects in the erythrocyte membrane	Hereditary spherocytosis Hereditary elliptocytosis
	Defects in crythrocyte metabolism	G-6-PD deficiency anemia
	Abnormal hemoglobin production	Sickle-cell anemia
	· ·	HbC disease, HbD disease
		HbE disease
Acquired accelerated hemolysis, due to:	Activation of the immune system	Immunohemolytic anemia
	Physical factors	Red cell fragmentation syndromes
	Chemical agents	Various forms of hemolytic anemia
	Microorganisms	Various forms of anemia (e.g., anemia of malaria)
	Secondary to other diseases	Various forms of anemia (e.g., anemia of hepatic failure)
	Sensitivity to complement	Paroxysmal nocturnal hemoglobinuria


2 Decreased erythrocyte production

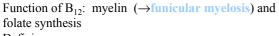

15

<u>21 Decreased proliferation of new erythrocytes</u> = aplastic anemia s.l. = hypoproliferative anemia (Fig. 15)


14b

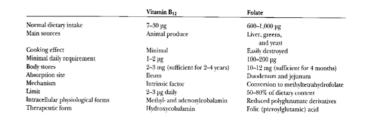
Derangement of DNA synthesis Slowering of cellular proliferation Vacleo-cytoplasmic asynchrony (,,dissociation*') Normal Hb production ⁷Fe ⁹PITR (plasma iron ¹RBC volume (MCV), ovalocytosis normal Hb concentration inside (MCHC) \downarrow T \downarrow RBC, \downarrow HTC, anisocytosis and polkilocytosis always present, \downarrow leucocytes and plateletes,

4/BG, 4/11C, anisocytosis and poikilocytosis always present, 4/eucocytes and platelets, hypersegmented neutrophils Attrophic glossitis, purpura

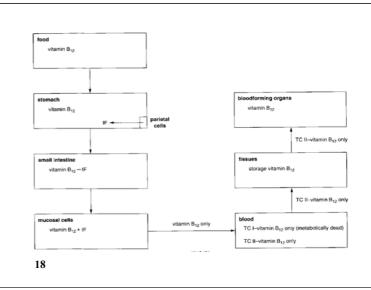

Folic acid deficiency (Megaloblastic anemia, Fig. 16)

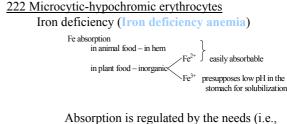
Decreased intake: alcoholism, hepatic diseases, tropical sprue (←coliform bacteria), malabsorption, resections. Increased requirements: gravidity, growth, ↑hematopoiesis. Folic acid antagonists: cytostatics, chemotherapeutics, antiparasitic and anticonvulsive drugs

Function of tetrahydrofolate: coenzyme for singlecarbon transfers \rightarrow necessary for thymidylate synthase \rightarrow rate limiting for DNA synthesis

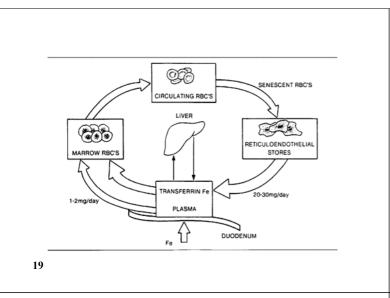

Vitamin B₁₂ deficiency (Megaloblastic anemia)

Synthetized by microbes only \rightarrow in foods of animal origin. Requirements small, stores large. Absorption of B₁₂ Fig. 18

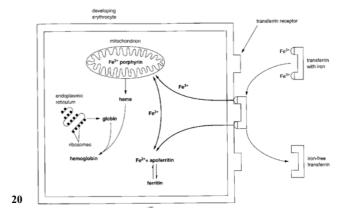



- Deficiency:
 - total vegetarianism
 - malabsorption syndromes (jejunal bacterial overgrowth, enteritis, intestinal parasites)
 - lack of intrinsic factor \Leftrightarrow pernicious anemia
 - adults: genetic, autoantibodies against parietal cells or IF→ chronic atrophic gastritis children: rare, inherited, abnormalities of IF

Folate compounds widely distributed in nature, rich in the diet, but small body stores. Fig. 17.



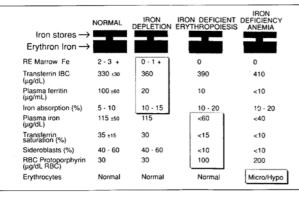
17


Absorption is regulated by the needs (i.e., by hematopoiesis) – by the Fe content in the mucosal gut cells Etiology of Fe deficiency: blood losses, ↑need, malabsorption Iron metabolism (Fig. 19)

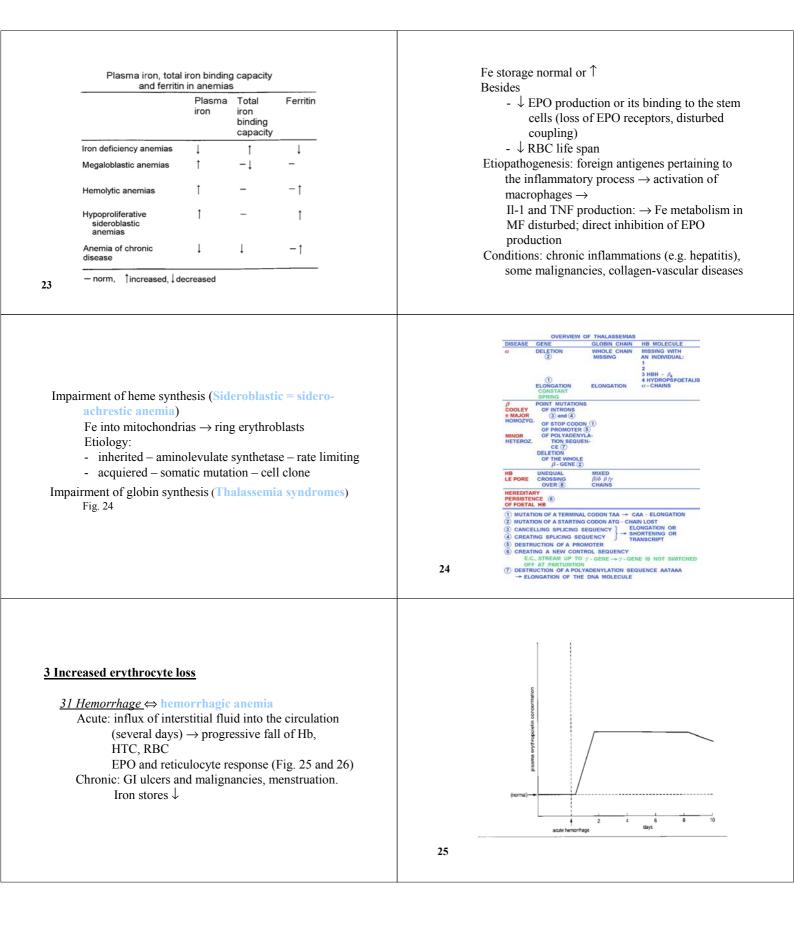
Ferritin: a protein envelope surrounds a microcrystalic core of inorg. Fe

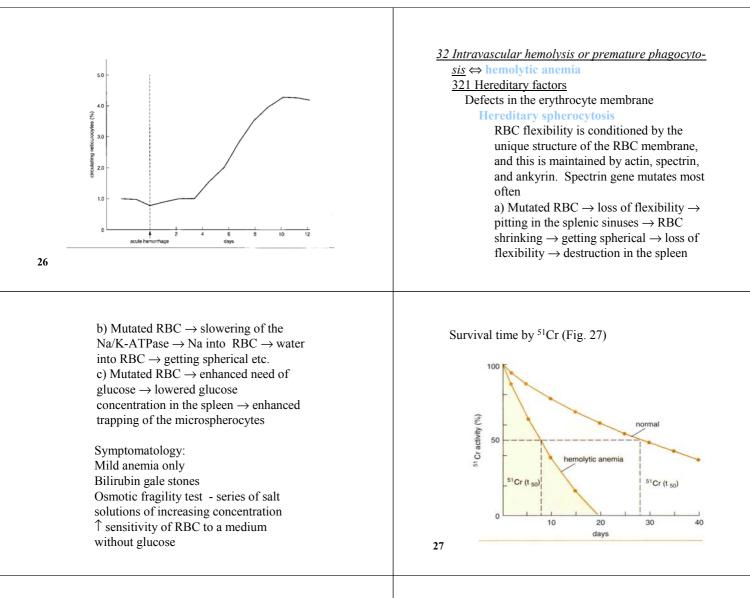
- Fe overload: disturbance of the gut mucosal cells. Hemosiderosis = RES cell containing hemosiderin, hemochromatosis = various organs contain hemosiderin
- Clinic: angular stomatitis, glossitis, koilonychia, dysphagia, pica, no sideroblasts, typical serum composition (Fig. 21)

Incorporation of Fe into the erythroblasts only from transferrin Fig. 20



	Plasma iron	Total iron binding capacity	Ferritin
Iron deficiency anemias	Ļ	1	Ļ
Megaloblastic anemias	t	-↓	-
Hemolytic anemias	t	-	$-\uparrow$
Hypoproliferative sideroblastic anemias	t	-	ţ
Anemia of chronic disease	Ļ	Ļ	-1


21

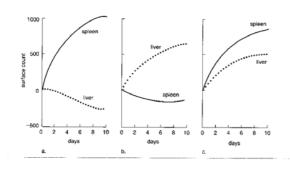

Other microcytic-hypochromic anemias Abnormalities of the heme or globin synthesis → ↓Hb production → more than 4 divisions → microcytosis and hypochromia Unavailability of iron to blast cells - Anemia of chronic disease (ACD) Block of Fe metabolism: macrophages degrading Hb of the decayed RBC are activated, proliferate and retain Fe for themselves ↓ hepatic syntheses → ↓transferrin together with plasma Fe (Fig. 23)

Development of microcytic anemia (Fig. 22)

22

Hereditary elliptocytosis

Mild anemia, in combination with other anemizing factors only Again a membrane defect of actinspectrin-ankyrin skeleton No therapy


Defects in erythrocyte metabolism

G6-PD deficiency anemia

95% of all glucose metabolism enzyme deficiencies Triggering factors: oxidizing drugs,

infections (→ activation of leucocytes producing active oxygen radicals) Favism is a unique phenomenon – fava beans (contain an oxidant L-dopa)

Surface counting patterns of ⁵¹Cr-labeled RBC (Fig. 28) Splenectomy!

Measuring of the G6-PD activity in the RBC → changing of the eating habits **Pyruvate kinase deficiency anemia** Embden-Meyerhof pathway, decline of ATP production, symptoms may be severe, specific enzyme assays (no other specific features), drugs not implicated in pathogenesis

Abnormal hemoglobin production Point mutations of Hb are mostly innocent, a small fraction is pathogenic: ↓ solubility and precipitation, ↑↓ affinity to oxygen, unstability of quaternal structure and Hb denaturation

These physiological/pathophysiological factors are of chemical, physical or immunological nature. The boundary between physiological and pathological is fuzzy here:

- AB0 incompatibility is present in 23% of all gestations (hemolysis is very uncommon here, however)
- Paroxysmal nocturnal hemoglobinuria is rather common (mild hemolysis)
- Metabolic stress is ubiquitous

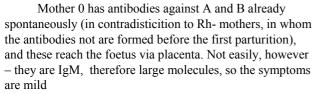
Sickle-cell anemia, HbC disease, HbD disease, HbE disease See lecture on genetics

322 Acquired accelerated hemolysis

Approximately:

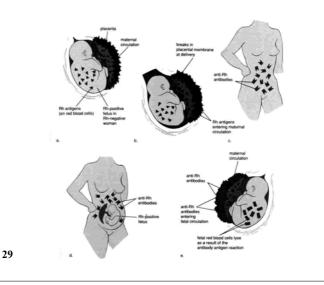
hereditary hemolysis \Leftrightarrow factors intrinsic to the RBC acquiered hemolysis \Leftrightarrow factors extrinsic to the RBC Physiological aging of RBC \rightarrow their defense mechanisms $\downarrow \rightarrow$ *intravascular hemolysis or phagocytosis in mononuclear phagocytes* (MF, reticular and endothelial cells). The environmental stressing factors shorten the RBC life span further. They are present to a degree already under physiologic conditions in most people.

<u>3221 Activation of the immune system</u> ⇔ immunohemolytic anemia


Classification of immunohemolytic anemia (IHA)

Alloantibodies ⇔ hemolytic disease of the newborn (HDN) AB0

Rh Autoantibodies Warm-active antibodies Cold-active antibodies


<u>Alloantibodies</u>

AB0 incompatibility

Antigen-antibody complexes \rightarrow complement activation \rightarrow premature lysis of RBC

Rh incompatibility – (Fig. 29)

<15% of Rh- mothers

At the first parturition, the RBC penetrate from the foetus into the mother \rightarrow production of anti-Rh+antibodies. The RBC having penetrated during the parturition could be killed by timely administration of anti Rh+ antibody (RhoGAM).

In the next gravidity, small numbers of the fetal RBC may get into the maternal circulation \rightarrow anamnestic response \rightarrow higher antibody titers of IgG (readily pass the placenta) \rightarrow HDN in the foetus

Symptoms:

Hemolysis \rightarrow erythroblastosis Inability to conjugate bilirubin \rightarrow jaundice

(possibly s.c. kernikterus, into the basal ganglia)

Residual concentration of the mother's antibody after birth \rightarrow slowering of growth; exchange transfusion

<u>Autoantibodies ⇔ autoimmune hemolytic anemias</u> (<u>AIHA)</u>

Warm type AIHA

could be considered:

а

b

30

31

blood cell

self-antigen

IgG against RBC membrane antigens Types: *Idiopathic* – antibodies against the proper RBC

are formed. Common autoimmunity mechanisms

blood cell self-antigen adsorbed drug or drug metabolite Complement

immune complex of

drug and antibody


lysis

lysis

complex adsorbed on

red blood cell membrane

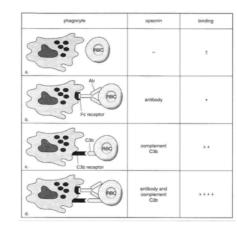
complement

- Polyclonal B cell activation
- Enhanced presentation of antigens etc.

Drug induced (Fig. 30)

The drug is a hapten and in a complex with a carrier protein \rightarrow production of antibodies. Three possibilities:

- a drug with a surface RBC antigen \rightarrow neoantigen \rightarrow production of antibodies and opsonization, e.g., penicillin


- a drug and serum protein (instead of RBC protein) \rightarrow neoantigen \rightarrow complexes are deposited on RBC

membrane, e.g., antimalarics, sulfonamides, phenacetin Alfa-methyldopa (antihypertensive drug) triggers the

gene for the Rh factor

With other diseases: leukemias, SLE, inf. mononukleosis

Pathogenesis of warm type AIHA (Fig. 31):

RBC coating with an antibody = opsonization \rightarrow binding of MF on RBC \rightarrow pitting by means of nipping of \rightarrow RBC sphericity \rightarrow loss of flexibility \rightarrow trapping Opsonization rarely leads to intravascular hemolysis

Symptoms of warm-type AIHA: Are mild, hemolysis is compensated Pitting \rightarrow spherocytes, microcytes **Direct Coombs test** (Fig. 32): Antiserum against anti-RBC antibodies is formed in rabbits \rightarrow RBC agglutination. IgG alone cannot bridge the repulsive force between RBC (= zeta potential), IgG + anti-IgG antibody can do it \rightarrow agglutination

Therapy: corticosteroids, immunosuppresive drugs

Cold type AIHA

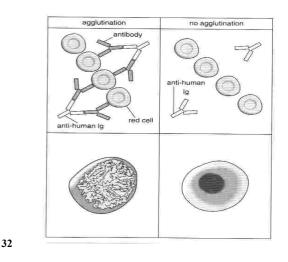
IgM against s.c. I antigen on the RBC surface, present also normally. IgM bridge the zeta potential \rightarrow they activate complement easily Etiology:

Enhanced anti-I antibodies

- idiopathic
- in infectious diseases (cause unknown): mycoplasma, inf. mononucleosis, lymphoproliferative diseases

Patogenesis:

 $\operatorname{cooling} \to I$ antigens are better accessible to the antibodies


destruction of the RBC in the microcirculation of the feet due to the repeated crashes of the soles with hard surfaces – march hemoglobinuria)
b) Artificial heart valves - traumatic cardiac

hemolytic anemia. Schistocytes often present (sickles)

c) Vasculitis or disseminated intravascular coagulation (DIC \rightarrow production of multiple intravascular thrombi) \rightarrow the blood is driven through the narrowed vessels \rightarrow mechanical damage to RBC

3223 Chemical agents

Various forms of hemolytic anemia Lead, copper salts, nitrobenzene, aniline, naphtalene Aspirin, phenacetin, antimalarics, sulfonamides...

Complexes on RBC \rightarrow complement activation \rightarrow C3b fragment \rightarrow intravascular hemolysis and agglutination

Symptoms:

Anemia only mild, but blocking of small extremity and acral vessels \rightarrow painful blanching of the skin

The withdrawn blood agglutinates spontaneously in the room temperature

<u>3222 Physical factors</u> ⇔ red cell fragmentation syndromes

Etiology: a) Long-distance running or marching (intravascular

In high doses, they damage not only the G6-PD defective RBC, but also normal ones Natural poisons (spiders, insects, snakes)

3224 Microorganisms

Various forms of anemia (e.g., anemia of malaria) Multiply in the RBC – genus Plasmodium Lyse the membrane – Clostridium welchii Produce polysaccharides which are adsorbed to RBC \rightarrow antibodies

<u>3225 Secondary to other diseases</u> Various forms of anemia (e.g., anemia of hepatic failure) Many inflammatory and malignant diseases Renal failure – echinocytes (burr cells) Hepatic diseases

<u>3226 Sensitivity to complement</u> ⇔ paroxysmal nocturnal hemoglobinuria

Unknown factor (somatic mution?) → complement activation in the RBC membranes (by the alternative way) Pancytopenia Loss of Fe via urine Venous blood clots Testing: a small quantity of complement lyses RBC