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Abstract 

Metformin is the first-line therapy for the treatment of Type 2 Diabetes Mellitus (T2DM) and is 
the most widely prescribed anti-diabetic drug in the world. A common and potentially 
hazardous side-effect of metformin treatment is vitamin B12 deficiency. OCT1 (SLC22A1) and 
OCT2 (SLC22A2) are highly polymorphic drug transporters responsible for the hepatic and renal 
uptake of metformin, respectively. Studies have documented that variants in OCT1 and OCT2 
can have an effect on transporter function altering the pharmacokinetic profile of metformin, 
which leads to inter-individual variability in metformin response. To date, there is no reported 
correlation between the systemic concentration of metformin, metformin dose, and vitamin B12 
levels, and whether this is affected by OCT gene polymorphisms. Thus, the overall aim of the 
studies described in this thesis was to explore the relationship between metformin 
pharmacokinetic parameters, OCT genetic variants and vitamin B12. To investigate this, we used 
biological samples from a cohort of 75 T2DM patients receiving metformin.  

In order to quantify metformin in human plasma, we designed and developed a sensitive and 
transferable hydrophilic interaction liquid chromatography (HILIC) method for both UV and 
mass spectrometric detection. This was successfully used to quantify metformin plasma levels in 
our cohort which ranged from 49 to 4908 ng/mL with a mean of 1879 ng/mL. 

To genotype patients for OCT1 and OCT2 polymorphisms, the SLC22A1 AND SLC22A2 genes 
were sequenced using Sanger sequencing. Fifty genetic variants were identified within the 5’ 
untranslated region (5’UTR), 3’UTR, exon and exon-intronic boundaries across both genes. Two 
novel single nucleotide polymorphisms (SNPs) were identified in SLC22A1 (g.-59C>T, c.+14 A>G). 
The potential effect of these variants on transporter function was explored using bioinformatic 
algorithms and in silico 3D structural modelling and ligand docking techniques.  

The metformin plasma concentrations and genetic data was collated with other clinical and 
biological data and incorporated into a population pharmacokinetic (PopPK) model to assess the 
influence genetic variants on metformin pharmacokinetics. Serum urea levels were the biggest 
predictor of metformin clearance. Only one genetic variant, the rs113569197 insertion was 
shown to be a significant influence on the predicted population metformin clearance in a 
univariate model. The rs113569197 variant was of particular interest as it represented an 8 bp 
insertion across an exon-intron boundary in SLC22A1, which we predicted to result in a 
premature stop codon and truncated protein. However, in multivariate PopPK modelling, this 
variant dropped out possibly because of lack of power.  

Multivariate linear regression analysis was used to explore the effect of metformin clinical 
variables and OCT genetic variants on vitamin B12 concentrations.  Metformin dose, mg/kg of 
body weight (P<0.0001) and serum folate levels (P=0.048) contributed independently to explain 
32% (P<0.0001) of the variance in serum vitamin B12 concentrations, but there was no effect of 
metformin plasma concentration (P=0.08) or genetic variants in SLC22A1 and SLC22A2. These 
data show that decreased serum vitamin B12 concentrations in patients with T2DM are driven 
more by metformin dose than exposure indicating that the mechanism by which metformin 
causes vitamin B12 deficiency is due to its effects at the level of the intestine, rather than 
systemically.   

In conclusion, the work presented in this thesis demonstrates that the mechanism of 
metformin-induced vitamin B12 deficiency is related to the dose, but not the plasma 
concentration of metformin.  Genetic variants in SLC22A1 and SLC22A2 did not influence 
vitamin B12 levels in this patient group.  Further work is required to define whether metformin 
specific drug transporters expressed in the intestine are responsible for metformin-induced 
vitamin B12 deficiency in order to better understand the pathogenesis. 
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1.1 Diabetes 

The term diabetes mellitus describes metabolic disorders with multiple 

aetiologies characterised by chronic hyperglycaemia as a result of disturbances 

in carbohydrate, fat and protein metabolism due to defects in insulin action, 

secretion, or combination of both.  Typical symptoms include thirst, polyuria, 

blurry vision, lethargy and weight loss. These symptoms are commonly not 

severe, or may be absent, and consequently hyperglycaemia sufficient to cause 

pathological and functional changes may be present for a long time before the 

diagnosis is made.  

There are two main types of diabetes; Type I diabetes mellitus (T1DM) 

previously known as insulin-dependent diabetes or juvenile diabetes, and Type 

II diabetes mellitus (T2DM), previously known as noninsulin-dependent 

diabetes mellitus.  

1.1.1 Type I Diabetes 

T1DM is a chronic autoimmune disorder that arises from the destruction of 

insulin producing β–cells in the pancreas. This is characterised by the presence 

of autoimmune antibodies specific to islet cells or insulin, which leads to β–cell 

destruction (Samuelsson et al., 1994). The detection of these antibodies and the 

C-peptide assay, which measures endogenous insulin production, help 

distinguish T1DM from T2DM (Atkinson and Eisenbarth, 2001). The exact cause 

of T1DM is unknown, but a number of explanatory theories include genetic 

susceptibility, environmental factors and/or exposure to an antigen from 

precipitating events such as viral or bacterial infection (Van Belle et al., 2011). 

 

1.1.2 Type II Diabetes 

T2DM is the most common form of diabetes and is characterised by disorders of 

insulin secretion and insulin action, either of which may be the predominant 

feature leading to insulin resistance. Both are usually present at the time that 

this form of diabetes is clinically manifest. In general, most cases of T2DM have 



Chapter 1 

5 

 

an unknown aetiology, but there are some other forms where specific factors 

are involved in causation including gestational diabetes and Maturity Onset 

Diabetes of the Young (Simha and Garg, 2008). This thesis is only concerned 

with T2DM, and thus, further discussion will focus on this form of diabetes only. 

1.2 Pathophysiology 

Under normal physiological conditions, glucose from the diet, or breakdown 

products of carbohydrates in the gut, are absorbed into the bloodstream 

elevating blood glucose levels. This rise in glucose levels stimulates the 

endocrine secretion of insulin from the β-cells of the pancreas, which binds to 

specific cellular receptors and facilitates entry of glucose into the cell. The cell 

then uses the glucose for energy. The increase in insulin secretion and the 

cellular glucose utilisation results in a decrease in blood glucose levels. A 

decrease in glucose levels is mirrored by a decrease in insulin production and 

secretion.  Normal glucose levels can be maintained if hepatic gluconeogenesis 

matches insulin mediated glucose uptake in peripheral tissue. However, when 

insulin resistance creates an imbalance, T2DM can ensue (Shah et al., 2000). 

A number of pathogenetic processes lead to the development of T2DM. These 

include mechanisms that lead to insufficient insulin production and thus 

secretion through the destruction of β-cells of the pancreas, and mechanisms 

that lead to insulin resistance in peripheral tissues; predominately liver, muscle 

and adipose tissue. This collectively results in high blood glucose levels or 

hyperglycaemia. Insulin is the only hormone that can lower blood glucose levels. 

However there are several counter-regulatory hormones which act to increase 

blood glucose levels, such as glucagon, growth hormone, catecholamines, 

thyroid hormones, and glucocorticoids (Mealey and Ocampo, 2007). These 

pathological processes can lead to an increased risk of other comorbidities 

including cardiovascular, peripheral vascular and cerebrovascular disease. 
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1.2.1 Long term complications 

Long-term complications of diabetes mellitus include progressive development 

of complications that can be categorised as micro-vascular or macrovascular. 

Micro-vascular complications include nervous system damage or neuropathy, 

renal system damage or nephropathy and retinopathy (Stratton et al., 2000).  

Macro-vascular complications lead to cardiovascular disease and stroke in 

addition to peripheral vascular disease. In individuals with diabetes, >65% of 

individuals die as a result of these long-term complications (Nathan et al., 

2009b), . Risk factors for cardiovascular disease amongst people with diabetes 

are the same as in patients without diabetes including hypertension, 

hypercholesterolemia, obesity, lack of exercise and smoking, but the overall 

effect is compounded by the presence of diabetes (Espeland et al., 2007). 

Diabetes contributes to atherosclerosis partly because of elevated lipid levels; 

up to 97% of diabetic patients exhibit dyslipidaemia (Mazzone et al., 2008).  

Elevated plasma low density lipoprotein and decreased plasma high density 

lipoprotein levels lead to lipid deposition in large vessels which can accelerate 

atherosclerosis in T2DM. 

 

Diabetic retinopathy is the most common micro-vascular complication in people 

who have T2DM; this can ultimately lead to blindness (Williams et al., 2004, 

Klein, 2002). More than 60% of T2DM patients will have some evidence of 

diabetic retinopathy during their lifetime (Williams et al., 2004). 

Hyperglycaemia can cause death of retinal intramural pericyte cells and thicken 

basement membranes. This blood-retinal barrier is particularly vulnerable to 

poor glucose control since the accumulation of glucose can increase the 

permeability of the barrier impairing vision (Stratton et al., 2000). 

Diabetic nephropathy occurs in around 30% of T2DM individuals (de Zeeuw et 

al., 2004). It is diagnosed by unrelenting proteinuria. The most common test is 

the urine albumin:creatinine ratio which quantifies microalbuminuria for the 

early detection of nephropathy (Gross et al., 2005). The exact aetiology is 

unknown but hyperglycemia may cause hyperfiltration and renal injury, 
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advanced glycation products, and activation of cytokines which all lead to 

impaired kidney function (Jermendy and Ruggenenti, 2007). High blood 

pressure is a major risk factor for nephropathy in T2DM, and hence there is a 

need to control blood pressure very strictly in diabetics. Other risk factors for 

nephropathy in T2DM are smoking, obesity, and genetic factors (Jermendy and 

Ruggenenti, 2007).  

Diabetic peripheral neuropathy is a frequent complication seen in 

approximately 30-50% of persons with diabetes (Vinik et al., 2003, Sun et al., 

2005, Tesfaye et al., 1996). The function of neurons and blood vessels are 

intertwined; blood vessels require normal neuronal function while neurons 

require adequate blood flow. Narrowing of peripheral blood vessels can lead to 

neuronal dysfunction which correlates closely with hypoxia. Risk factors include 

age, duration of diabetes, smoking and hypertension (Tesfaye et al., 2005). 

People with diabetic peripheral neuropathy are at risk of foot ulceration and 

neuropathic arthropathy which may lead to lower-extremity amputation (Singh 

et al., 2005).  

1.3 Epidemiology 

Globally, diabetes is one of the commonest chronic diseases. It affects 9% of the 

world's population (World Health Organization, 2014). T2DM diabetes accounts 

for up to 85% of this total in both adults and children. In the UK, it affects 1.8 

million people with an estimated 1 million currently undiagnosed (Diabetes UK, 

2015). This figure is expected to rise in the coming decades because of the 

increased tendency of the population towards a sedentary lifestyle. 

 

1.4 Economic costs 

It is currently estimated that about £10 billion is spent by the NHS on diabetes 

equating to roughly 10% of the NHS budget (Hex et al., 2012). The total cost, 

including direct and indirect costs, associated with diabetes in the UK currently 
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stands at £24 billion and this is predicted to rise  to £40 billion by 2035 (Hex et 

al., 2012). In England 2012, 42 million prescription items for diabetes were 

dispensed in primary care units at a net ingredient cost of £768 million (The 

Health and Social Care Information Centre, 2013). What these estimated costs 

fail to take into account is the considerable costs to the individual in terms of 

loss of earnings and decreased quality of life. 

1.5 Diagnosis  

The diagnosis of diabetes is performed using two biochemical tests, glucose 

and/or glycosylated haemoglobin A1c (HbA1c) (Selvin et al., 2004). Fasted 

glucose measurements are more commonly used in practice - see Table 1.1 for 

interpretive results. Two separate fasted glucose levels outside the normal 

range with the individual presenting with symptoms of diabetes can be 

indicative of diabetes, with high glucose levels reflecting poor glycaemic control. 

However, if after two fasting glucose measurements the results are equivocal 

then an oral glucose tolerance test (OGTT) should be performed. This requires 

the patient to be fasted, a fasting blood sample is then taken (0 minutes), and 

then a glucose load (75g glucose –Polycal in 250-300 mL water) is given and a 

second glucose sample taken after 2 hours (120 minutes) (Stumvoll et al., 

2000).  

High serum glucose results in glucose non-enzymatically binding (glycating) to 

HbA1c. Thus a glycated HbA1c level can reflect the average glucose red blood 

cells have been exposed to in their lifetime: 115 days (>3 months) with 50% of 

HbA1c levels from the period preceding 30 days (Goldstein et al., 2004, Nathan 

et al., 2009a). The test result is independent of fasting status and does not 

require special test preparations as with the oral glucose test. As of 2011 the 

World Health Organisation (WHO) recommended glycosylated HbA1c for the 

diagnosis of diabetes and to screen an individual at high risk of diabetes (WHO, 

2011). A glycosylated HbA1c of 48 mmol/mol is recommended as the cut-off 

point for diagnosing diabetes. 
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Table 1.1 Values of glucose and glycosylated HbA1c for diabetes mellitus and other 
categories of hyperglycemia. 
 Glucose concentration  

mmol/L 
Glycosylated HbA1c 
mmol/mol 

Normal  <42 
    Fasting <6.1  
    and 2 hrs* <7.8  
Diabetes Mellitus  42-47 
    Fasting ≥7.0  
    or 2 hrs* ≥11.1  
Impaired Glucose Tolerance   42-47 
    Fasting <7.0  
    and after 2 hrs * ≥7.0-<11.1 
Impaired Fasting Glucose  ≥48 
    Fasting 6.1-6.9  
     and after 2 hrs * <7.8  

*Following the oral glucose test involving ingesting 75 g anhydrous oral glucose. Fasting is 
defined as no food for 10 hours prior to sample being taken, water is allowed. Glycosylated 
HbA1c levels are independent on fasting status and time following oral glucose tolerance test. 

1.6 Management 

T2DM can be managed in several ways, from dietary and lifestyle changes 

through to therapeutic interventions. Since the 1920s when diabetes was 

initially treated with porcine insulin (Banting et al., 1923), there are now 15 

described classes of anti-glycaemic drugs available (Kahn and Buse, 2015). All 

share a common goal to reduce and maintain glucose within normal 

concentrations for as long as possible post diagnosis to prevent the 

development of complications. 

1.6.1 Lifestyle changes 

There is evidence to suggest that T2DM can be prevented by lifestyle changes in 

adults with impaired glucose tolerance such as changes in weight, physical 

activity or dietary factors (Gillies et al., 2007, Penn et al., 2009). Weight 

reduction and increase in exercise are also beneficial to slow the progression of 

diabetes and its complications (Boule et al., 2001). Although these lifestyle 

changes are proven to be effective, almost 50% of individuals will require the 

addition of oral hypoglycaemic drugs and/or insulin within 6yrs of diagnosis 

(Inzucchi, 2002).  
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1.6.2 Anti-diabetic therapies 

There are five main groups of therapies used to control hyperglycaemia: insulin 

secretagogues, thiazolidinediones, α-glucosidase inhibitors, insulins and the 

biguanides. 

1.6.2.1 Insulin secretagogues  

These are one of the most commonly prescribed class of antidiabetic drugs 

comprising of two distinct drug groups, the sulphonylureas and meglitinide 

analogues (Agarwal et al., 2014). Both classes primarily act to increase 

pancreatic insulin secretion. The sulphonylureas stimulate insulin secretion by 

binding to sulphonylurea receptors on the pancreatic β-cell plasma membrane, 

causing membrane depolarisation through potassium influx, and exocytosis and 

release of insulin (Turner et al., 1998, Campbell et al., 1991). The meglitinides 

also bind to the sulphonylurea receptors through a different mechanism to the 

sulphonylureas but result in a shorter duration of action, and are therefore used 

to control postprandial hyperglycaemia. As the efficacy of sulphonylureas 

decreases over time and is associated with a decrease in insulin secretion, 

combination therapy has focused mainly on implementing insulin-sensitising 

medications, including metformin and thiazolidinediones (Campbell et al., 

1991). Insulin secretagogues are associated with weight gain as the increased 

insulin concentration leads to anabolic effects (Turner et al., 1998).  

1.6.2.2 Thiazolidinediones  

Otherwise known as the 'glitazones', this group of drugs are insulin sensitisers 

which activate peroxisome proliferator-activated receptors (PPARs) (Inzucchi, 

2002). These are primarily expressed in adipose tissue and to a lesser extent the 

liver. When activated, these nuclear receptors increase the expression of 

insulin-sensitive genes. The downstream effects include increasing adipocyte 

lipogenesis, decreasing circulating free fatty acids and increasing glucose 

utilisation (Saltiel and Olefsky, 1996).  
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1.6.2.3 Alpha-glucosidase  inhibitors  

Alpha-glucosidase inhibitors are competitive inhibitors of enzymes responsible 

for digesting carbohydrates (Lebovitz, 1998). This results in a delay in 

carbohydrate and glucose absorption thereby lowering postprandial blood 

glucose levels. They are only used in patients with non-insulin dependent 

diabetes.  

1.6.2.4 dipeptidyl-peptidase-IV inhibitors 

Incretin hormones are defined as intestinal hormones that are released in 

response to carbohydrates (glucose) ingestion, from the intestinal mucosa of 

substances that enhance insulin secretion beyond the release caused by the 

absorbed glucose itself (Gautier et al., 2005). In humans, the incretin effect is 

mainly caused by two peptide hormones, glucose-dependent insulin releasing 

polypeptide, and glucagon-like peptide-1 (Vilsboll and Holst, 2004). Both of 

these hormones are both rapidly degraded into inactive metabolites by the 

enzyme dipeptidyl-peptidase-IV (DPP-IV). Thus, DPP-IV known as or gliptins, 

can be used as hypoglycemic medication in T2DM. Examples of which are 

Sitagliptin and Vildagliptin (Scheen, 2012). 

1.6.2.5 Insulins 

Although insulin therapy is critical in T1DM, it also plays an important role in 

the treatment of with T2DM individuals and is usually indicated with the failure 

to achieve glycaemic control with oral hypoglycaemic drugs, exercise or diet.  

Between 2013-2014 there were 6.5 million insulin items prescribed, 

representing 14.3 % of items prescribed for T2DM (The Health and Social Care 

Information Centre, 2013). 

Insulin is categorised in the British National Formulary (BNF) into three groups; 

short-acting (rapid onset), intermediate-acting and long-acting (Home et al., 

2008). However, these exhibit different immunogenicity, pharmacokinetic and 

pharmacodynamic properties.  The rapid-acting human insulin analogues have a 

faster onset but shorter duration (0.5-1 hr) of action than soluble insulin; as a 

result, compared to soluble insulin, fasting and preprandial blood-glucose 
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concentrations are higher, with postprandial blood glucose concentration being 

marginally lower.  

Intermediate and long-acting insulins have an onset of action of approximately 

1–2 hours and a duration of 16–42 hours. Some are taken twice daily in 

combination with short-acting insulin, and others are given once daily, 

particularly in elderly patients (Home et al., 2008).  

Using insulin in combination with oral anti-diabetic therapies improves glucose 

levels in patients with poorly controlled glycaemia despite maximal and 

prolonged administration of oral anti-diabetic drugs (Mayfield and White, 

2004). 

 

1.6.2.6 Biguanides  

The French lilac (Galega officinalis) was firstly used for medicinal purposes in 

the 17th century when it was proposed to possess anti-diabetic properties 

(Patade and Marita, 2014). This plant contained high levels of galegine and 

guanidine, both of which exhibit anti-diabetic properties.  

This interest in the therapeutic properties of guanidine ultimately led to the 

development of a class of compounds in the early 1900s called biguanides for 

the management of type II diabetes mellitus (Slotta and Tschesche, 1929). Anti-

hyperglycemic biguanide therapies which share this class include metformin, 

buformin and phenformin (Figure 1.1).  

Metformin is the only biguanide in use as both phenformin and buformin were 

discontinued from use in the 1970s due to their ability to lead to lactic acidosis - 

see section 1.9.1 (Irsigler et al., 1979). This thesis will now predominantly focus 

on metformin.  
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Figure 1.1 Structure of metformin and related compounds. 
Top to bottom, biguanide, metformin, phenformin, buformin. All share a common structural feature; 
the biguanide backbone, HN(C(NH)NH2)2.  Structures drawn with ChemBioDraw. 

1.7 Metformin 

Metformin, N,N-dimethyl imidodicarbonimidic diamide, is the most commonly 

prescribed oral antidiabetic drug for T2DM globally and in the UK (Agarwal et 

al., 2014, Srinivasan et al., 2008). Between 2012 and 2013, over 16 million 

metformin items were prescribed in the UK (Prescribing and Primary Care 

team, 2013). Although metformin is the most commonly prescribed antidiabetic 

drug in the UK, it has a relatively low cost in comparisons to insulin therapies. 

NICE recommends that this drug should be the first choice for oral antidiabetic 

therapy (Home et al., 2008). 

Biguanide 
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1.7.1 Mechanism of action 

Metformin’s primary action is to decrease hyperglycaemia, primarily through 

suppressing hepatic and skeletal gluconeogenesis and opposing the action of 

glucagon which has a pharmacological endpoint of reducing glucose levels 

(Wiernsperger and Bailey, 1999, He et al., 2009, Kirpichnikov et al., 2002). One 

study found that individuals with T2DM had twice the normal rate of 

gluconeogenesis and metformin reduced this rate by 24% (Hundal et al., 2000). 

The exact mechanism by which metformin suppresses gluconeogenesis still 

remains elusive. However, at the centre of metformin's mechanism of action is 

the alteration of energy metabolism of the cell. There are a number of proposed 

mechanisms by which metformin exerts its effects, including the inhibition of 

the mitochondrial respiratory chain (complex I), and activation of protein 

kinase A (PKA). The most widely accepted and studied mechanism is the 

activation of AMP-activated protein kinase (AMPK) (Foretz et al., 2010, Chen et 

al., 2013, Marcil et al., 2013). Other research suggests metformin does not 

directly activate AMPK but this is secondary to metformin’s effect on the 

mitochondria, specifically inhibiting the mitochondrial respiratory-chain 

complex 1. Although the exact mechanism by which metformin inhibits the 

respiratory-chain complex 1 remains unknown, it is thought to decrease the 

hepatic energy state which indirectly activates AMPK (Um et al., 2007, Foretz et 

al., 2010). The downstream effects of this are dependent on the target organ or 

tissue. The summary of the clinical effects of metformin are summarised in 

Figure 1.2.  

A genome-wide association study (GWAS) found common variants near the 

ataxia telangiectasia mutated (ATM) gene associated with glycaemic response to 

metformin in T2DM (Zhou et al., 2011). The ATM gene encodes a 370 kDa 

protein that is a serine/threonine protein kinase of the atypical 

phosphoinositide 3-kinase-related protein kinase family (van Leeuwen et al., 

2012). This is involved in Deoxyribonucleic acid (DNA) repair and cell cycle 

control and crucially plays a role in the effect of metformin upstream of AMPK. 

It has been suggested that AMPK is an effector of the ATM gene and that 
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activation or inhibition of ATM alters AMPK activation (Sun et al., 2007, Lewis et 

al., 2009).  

 

 

Figure 1.2 Summary of metformin’s mechanism of action 
Metformin’s site of action is the mitochondria in liver, muscle and adipose tissue. Through the 
inhibition of the respiratory-chain complex I, AMPK is activated and performs downstream signaling 
effects which ultimately leads to countering insulin resistance and decrease gluconeogenesis. 

 

1.8 Clinical Pharmacology of Metformin  

1.8.1 Administration 

Although metformin is primarily administered orally, intravenous dosing 

studies have revealed that metformin is rapidly cleared from the body with an 

intravenous plasma half-life ranging from 1.7 to 4.5 hr (Graham et al., 2011). 

Following intravenous administration, the majority of metformin was excreted 

in the urine unchanged, with 35-85% of metformin being recovered 

(Pentikainen et al., 1979, Tucker et al., 1981).  Metformin’s renal clearance is >4-

fold higher than creatinine clearance; indicating metformin is actively secreted 

into the urine (Tucker et al., 1981). Sum et al (Sum et al., 1992) found no acute 

Adipose tissue Muscle 

Respiratory-chain complex 1 

Metformin 

Liver 

↑AMPK activity 

↓Lipolysis ↓Gluconeogenesis 

↓Lipogenesis 

↑Insulin mediated glucose 
uptake 

↑ Glucogenesis 

↓Fatty acid oxidation 



Chapter 1 

16 

 

effect of IV metformin on hepatic glucose production or peripheral glucose 

disposition, implying that a chronic persistent effect is more important than an 

immediate effect upon changes in the plasma metformin level. Metformin is not 

detected in faeces following intravenous administration (Tucker et al., 1981). 

The oral daily doses of metformin range from 0.5-3 g (British National 

Formulary, 2015) which are administered as a hydrochloride salt (Mw 165.63); 

however metformin exists in its protonated state in the body (Mw 129.16). 

Normal dosing is dependent on severity of glycemic control in T2DM but normal 

dosing starts at 0.5 g with dose escalated if not HbA1c levels are not responding 

to treatment (British National Formulary, 2015). Exposure of oral metformin is 

dose proportional (Cullen et al., 2004). The pharmacokinetics of metformin and 

data presented in this thesis encompasses orally administered metformin.  

 

1.8.2.1 Absorption 

Oral metformin is absorbed predominantly from the small intestine (ileum). The 

bioavailability is unexpectedly high (40-60%), given its hydrophilicity and 

positive charge at all physiologic pH values (Scheen, 1996, Graham et al., 2011, 

Pentikainen et al., 1979). Metformin bioavailability is dose-disproportional, 

meaning there is a decrease in bioavailability with increasing dose. This has 

been observed by Tucker et al (1981) who found that the bioavailability of a 1.5 

g dose of metformin was approximately 9-24% lower than that of a 0.5 g dose. 

Additionally, Sambol et al (1996) observed 12% lower bioavailability with a 

0.85 g dose of metformin than with a 0.5 g dose. One possible hypothesis for the 

dose-disproportionality in absorption is because metformin is hydrophilic and 

largely ionised in the gastrointestinal (GI) tract, its permeability is limited, 

perhaps increasingly as it transcends the tract. Proctor et al. (2008) found that 

the major route of metformin absorption was not through cellular transport but 

through the tight junctions of ileal cells using paracellular proteins called 

claudins.  Their in vitro studies found that metformin was taken up by cells in 

the apical membrane but not transferred through the basolateral membrane. 

They have suggested the ‘sponge’ hypothesis to describe the absorption of 
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metformin from the gut: as the basolateral membrane restricts cellular 

transport of metformin, it subsequently sequesters in the cell, and as luminal 

metformin concentration decrease and falls below the intracellular 

concentration, metformin is transported back into the intestinal lumen.  

The peak plasma concentration (Tmax) is reached within 1-3 hr after oral intake 

of immediate release tablets and within 4-5 hr after oral intake of extended 

release tablets (Graham et al., 2011, Tucker et al., 1981). The delivery of 

metformin in the gut is considered to be the rate-limiting step in its absorption 

(Vidon et al., 1988). Steady-state metformin concentrations are reached within 

24 to 48 hours (Scheen, 1996, Charles et al., 2006, Graham et al., 2011). Unlike 

the majority of therapeutic drugs, metformin is not metabolised (Hardie, 2007).  

 

1.8.2.2 Therapeutic range 

Despite metformin being in routine use for over 50 years, there is no definitive 

therapeutic range. A systematic review of metformin therapeutic concentrations 

found that cited concentrations ranged from 0.13 to 90 µg/mL with the lowest 

and highest boundaries ranging from 0 and 1800 µg/mL, with the majority of 

ranges proposed between 0.1 – 4 µg/mL (Kajbaf, 2015).  They concluded that 

cited concentrations were conceptual rather than based on scientific basis and 

advised that metformin therapeutic concentrations should be related to 

efficacious dose, and blood glucose control in long-term treated patients.  The 

most common therapeutic concentrations range cited is between 1-2 µg/mL 

(Dell'Aglio et al., 2009, Kruse, 2001, Graham et al., 2011, Scheen, 1996). 

Conversely, concentrations below 2.5 µg/mL have been suggested to minimise 

the risk of metformin accumulation and the development of metformin 

associated lactic acidosis (Graham et al., 2011, Vecchio et al., 2014). 

 

1.8.2.3 Distribution 

Metformin absorption in the body is fast, but exhibits a slow transfer to other 

peripheral compartments (Pentikainen et al., 1979, Tucker et al., 1981).  In 
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humans, metformin has been found to accumulate in the small intestine (Wang 

et al., 2002), liver (Graham et al., 2011, Nies et al., 2011b) and in the kidney 

(Kimura et al., 2005b, Kimura et al., 2005a).  At the cellular level, localisation of 

metformin has been observed in rat cells in which 75% of metformin localised 

in the cytosolic compartment with the remainder found in other organelles such 

as mitochondrial and plasma membrane fractions (Wilcock et al., 1991).  

Metformin does not bind to plasma proteins, reflected by its high volume of 

distribution, of which is around 300 L (Scheen, 1996, Graham et al., 2011). 

Metformin is also taken up and accumulates in erythrocytes, contributing to a 

longer elimination half-life (Robert et al., 2003, Tucker et al., 1981). See Table 

1.2 for a summary of metformin pharmacokinetics.  

1.8.2.4 Elimination 

The principle route of metformin elimination is through active tubular secretion 

in the kidney. Metformin is excreted unchanged in the urine; the population 

mean for renal clearance (CLr) is 510±120 mL/min (Graham et al., 2011, 

Pentikainen et al., 1979, Tucker et al., 1981).  Approximately >80% of the oral 

dose is recovered in the urine following oral administration.   

Graham et al (2011) concluded metformin’s high clearance is attributed to three 

factors;  

1. Metformin is a small polar molecule that does not bind to plasma 

proteins, and thus is readily filtered at the glomerulus.  

2. Metformin is a substrate for OCT, MATE1 and MATE2K (see section 

1.11.3.1).  

3. Passive resorption should be minimal due to its low lipid solubility.   

Renal function strongly correlated with the renal clearance rates observed with 

metformin treatment (Tucker et al., 1981); therefore, sufficient renal function is   
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Table 1.2. Summary of pharmacokinetic parameters for oral metformin in humans. 
 

Pharmacokinetic parameter values are expressed as mean with the standard deviation in parenthesis.  (N), the number of patients;  Cmax, the maximal plasma metformin 
concentration; Tmax, is the time to the maximal plasma drug concentration; AUC, represents the area under curve of the metformin plasma concentration as a function of 
time;  CLR, represents the renal clearance; VD, apparent volume of distribution; F, oral bioavailability (absorption).  

  

 units Pentikainen (1979) Tucker et al (1981) Pentikainen (1986) Timmins (2005) Sambol (1996) 

N  3 4 4 6 15 9 

Dose g 0.5 0.5 1.5 1.0 1.0 0.85 

Cmax mg/mL 1.55 (0.24) 1.02 (0.34) 3.1 (0.93) 1.58 (0.1) 1.32 (0.23) 1.51 (0.2) 

Tmax h 1.9 (0.43) 2.2 (0.3) 1.5 (0.4) 2.25 (0.4) - 3.28 (0.4) 

AUC mg/h/L 9.08 (1.54) 6.71 (1.82) 18.4 (6.52) - - 11.7 (1.3) 

CLR mL/min 444 (23) 525 (125) 519 (278) 542 (78) 1265 (274) 1130 (457) 

VD L 69 (4.5) 276 (68) - - 559 (163) 1211 (690) 

F % 60 (8) 55 (15) 50 (21) 33 - - 
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essential to eliminate the drug (Jones et al., 2003). In cases where renal function 

is impaired, such as in diabetic nephropathy (see section 1.2.1), metformin can 

accumulate in the plasma and may lead to possible adverse reactions (see 

section 1.9).  NICE recommends that the dose should be reviewed if estimated 

glomerular filtration rate (eGFR) less than 5 mL/minute/1.73 m2 and to avoid if 

eGFR less than 30 mL/minute/1.73 m2 (Home et al., 2008). Intravascular 

administration of iodinated contrast agents can cause renal failure, which can 

increase the risk of lactic acidosis with metformin (Goergen et al., 2010).  

1.9 Adverse Events and Toxicity 

1.9.1 Metformin Associated Lactic Acidosis  

Metformin’s most severe adverse effect, and that of other biguanides, is lactic 

acidosis (Graham et al., 2011, Brown et al., 1998, Kruse, 2001, Hulisz et al., 

1998). However, unlike phenformin and buformin, the risk of developing lactic 

acidosis with metformin is lower (rate of 10 per 100,000) (Brown et al., 1998). 

Lactic acidosis is characterised by elevated blood lactate concentration (>5.0 

mmol/L), decreased blood pH (<7.35), and electrolyte disturbances with an 

increased anion gap. The mortality rate of metformin associated lactic acidosis 

(MALA) is approximately 50% (Graham et al., 2011). This is predominately 

observed in high-risk patients such as those with significant renal impairment 

or acute renal failure (Brown et al., 1998). Therefore it is common that 

metformin should only be prescribed if patients’ CLCR or eGFR is above a defined 

low limit. Other risk factors include old age associated with reduced renal 

function and metformin doses >2 g/day (Salpeter et al., 2003). Furthermore, 

individuals with T2DM may be more prone to MALA for a number of reasons, 

including their microvascular disease and risk of diabetic nephropathy (Hulisz 

et al., 1998, Jones et al., 2003). One study found metformin plasma 

concentrations of 20–107 mg/L in around 50% of patients with lactic acidosis 

(Lalau and Race, 1999). 
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The exact mechanisms of MALA are not fully understood. Metformin inhibits 

hepatic gluconeogenesis, which results in lactate formation (Wiernsperger and 

Bailey, 1999). Under normal physiological conditions, excess lactate is cleared 

by the kidneys and other biological processes. When impaired renal function is 

present, however, clearance of both lactate and metformin is reduced, leading to 

increased levels of both, thus resulting in an accumulation of lactic acid (Lalau 

and Race, 1999). Additionally metformin decreases liver uptake of lactate.   

1.9.2 Gastrointestinal Side Effects 

The most common adverse effect of oral metformin is GI irritation, with 

symptoms including diarrhoea, cramps, nausea, vomiting, and increased 

flatulence (Scheen, 1996, Graham et al., 2011). The rates of GI intolerance range 

from 5 to 54%, with premature discontinuation of therapy in 4% of cases 

(Tarasova et al., 2012, Scheen, 1996, Bray et al., 2012, Haupt et al., 1991). These 

rates make metformin the most common antidiabetic drug associated with GI 

side effects (Garber et al., 1997). GI symptoms can be minimised through slowly 

incrementing dosage over a period of weeks (Scarpello, 2001). 

1.10 Vitamin B12  

Vitamin B12 was first described in 1926 by Minot and Murphy (Minot and 

Murphy, 1926) as a substance present in the liver which reversed pernicious 

anaemia. The vitamin was first isolated from liver and given the name vitamin 

B12 in 1948 (Rickes et al., 1948). Vitamin B12 belongs to the group of biologically 

active compounds chemically classified as cobalamins. Structure is illustrated in 

Figure 1.3. 

1.10.1 Sources Vitamin B12  

As vitamin B12 is only synthesised by bacteria, humans must obtain vitamin B12 

from dietary sources. However, some animals can source vitamin B12 

synthesised by their own bacterial colonic flora. Humans can obtain vitamin B12 

from foods of animal-origin, such as dairy products, eggs, fish and meat. The 
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recommended dietary reference intake for an adult in the UK is 1.5 µg daily 

(National Health Service NHS, 2012).  

 

 

Figure 1.3. structure of vitamin B12.  
The basic structure is a tetrapyrrole ring, a corrin, with a central cobalt atom and a purine 
nucleotide. The cobalamins differ in the side chain (R-) attached to the cobalt and are named by the 
organic ligand, Cyanocobalamin (-CN), 5’-deoxyadenosyl, Methyl (-Me), Hydroxycobalamin (-OH). 
The biologically active compounds methylcobalamin and deoxyadenosylcobalamin are labile, 
whereas hydroxycobalamin and cyanocobalamin, which are used therapeutically, are more stable, 
but must be converted to the former two to function as enzyme cofactors. The labile forms are 
converted to cyanocobalamin when the serum concentration of vitamin B12 is quantified. 

 

However, the Food and Drug Administration (FDA) recommends higher 

amounts, 2-3 µg daily (Fankhanel and Gassmann, 1998). Vitamin B12 can also be 

provided through supplements in multi-vitamin pills and processed foods, 

including energy drinks (Selvakumar and Thakur, 2012)]. 
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1.10.2 Vitamin B12 function 

The highly reactive C-Co bond in vitamin B12 acts in two main enzymatic 

reactions in humans: the methionine synthase reaction and the methylmalonyl-

CoA mutase reaction (Figure 1.4).  

 

Figure 1.4 Summary of vitamin B12 in the methionine synthase and methylmalonyl-
CoA mutase reactions. 
Vitamin B12 is essential for the metabolism of homocysteine and methylmalonyl-CoA. Methionine 
synthase catalyses the conversion of homocysteine to methionine and requires the cofactor 
methylcobalamin (MeB12) as a methyl group donor. The metabolism of methylmalonyl-CoA to 
succinyl-CoA is accomplished by the enzyme methylmalonyl-CoA mutase and requires the presence 
of adenosylcobalamin (AdoB12). A lack of vitamin B12 can potentially cause an increase in 
homocysteine and methylmalanoic acid.  

The methionine synthase reaction occurs in the cytoplasm where 

methylcobalamin serves as an intermediate, to transfer a methyl group from 5-

methyl-tetrahydrofolate (5-MeTHF) from folate. This then converts 

homocysteine to methionine (Figure 1.4). The production of 5-methyl-

tetrahydrofolate from folate is irreversible, and in vitamin B12 deficiency, traps 

folate; this is known as the methyl-folate trap (Sauer and Wilmanns, 1977). 

Thus DNA production is impaired due to shortage of this functional form of 

folate. Simultaneously, homocysteine accumulates due to impaired methionine 

synthesis. 
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The methylmalonyl-CoA mutase reaction occurs in mitochondria where 

adenosylcobalamin (AdoB12) is required as a coenzyme for methylmalonyl-CoA 

mutase (Allen et al., 1993). Vitamin B12 deficiency causes accumulation of 

methylmalonic acid, the effects of which are explained later in section 1.10.5.2.  

1.10.3 Vitamin B12 homeostasis   

Absorption of dietary vitamin B12 is a complex process involving several parts of 

the GI tract. Around 1% of the ingested vitamin B12 is thought to be absorbed by 

passive diffusion (Birn, 2006).  After ingestion, vitamin B12 is released from 

dietary protein by the acidic environment and peptic digestion in the stomach, 

followed by binding to haptocorrin, a glycoprotein secreted in saliva and gastric 

juice. In the duodenum, pancreatic secretion raises intraluminal pH and 

facilitates degradation of haptocorrin by pancreatic proteases, releasing vitamin 

B12. The absorption of vitamin B12 is dependent on binding to the Intrinsic factor 

(IF), a glycoprotein, produced by parietal cells of the gastric mucosa in the 

stomach. This vitamin B12-IF complex is recognised by the multi ligand apical 

membrane protein, Cubam, which endocytoses the complex into the epithelium 

of the terminal ileum (Fyfe et al., 2004, He et al., 2005). Cubam is composed of 

the extracellular protein cubilin (460 kDa) and the transmembrane protein 

amnionless (45 kDa) (Andersen et al., 2010). Amnionless is responsible for 

membrane anchorage, biosynthetic processing, and trafficking to the plasma 

membrane of the receptor whereas cubilin contributes to the recognition and 

binding of the vitamin B12-IF complex. More specifically the CUB5-8 domains of 

cubilin bind with high affinity to the vitamin B12-IF complex in a Ca2+dependent 

manner (Andersen et al., 2010). Vitamin B12 is then released into the 

bloodstream and binds to its transport proteins, transcobalamin, and 

haptocorrin. Normally no free B12 is present in the circulation (Birn, 2006, Bor 

et al., 2004). Serum transcobalamin concentrations are around 1 nM of which 

10% is saturated with vitamin B12. Serum haptocorrin is similar to that of 

transcobalamin but 75% is saturated with vitamin B12 (Nexo and Andersen, 

1977). Although transcobalamin binds only 25% of the circulating vitamin, it is 

responsible for the delivery of B12 to most tissues. 
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Around 50% of the body’s total vitamin B12 store is located in the liver, with the 

remaining amounts stored in other tissues including muscle and kidneys (Birn 

et al., 2002). It has been estimated that a normal person’s body store of 1-3 mg 

would be sufficient to meet the body’s needs for 3-6 years under normal 

conditions (Allen, 2008). 

Vitamin B12 is excreted predominantly through faecal and biliary secretion 

when concentrations are within the normal range with urinary excretion levels 

being minimal (Birn, 2006). However, under excess, urinary excretion increases. 

There is increasing evidence demonstrating the contribution of the kidney to 

vitamin B12 homeostasis.  Vitamin B12 has been shown to be filtered in the 

glomeruli and reabsorbed in the renal tubular system to prevent its urinary loss 

(Birn et al., 2003, Nielsen et al., 2001). The megalin receptor is essential for the 

reabsorption of filtered transcobalamin-B12-complex in the proximal tubule 

(Birn et al., 2002). The receptors megalin and cubilin receptors  are heavily 

expressed in the proximal renal tubular cells (Moestrup et al., 1996). After 

endocytosis into the proximal tubular cells, vitamin B12 may be metabolised, 

stored or released. Significant amounts of vitamin B12 accumulate in lysosomes 

of the proximal tubular cells, suggesting a storage role of the kidney for vitamin 

B12 (Birn, 2006). 

1.10.4 Signs and symptoms of vitamin B12 deficiency 

Vitamin B12 deficiency can cause a wide range of signs and symptoms 

dependent on the extent of the deficiency and the stage at which the clinical 

manifestation arises. Most commonly vitamin B12 deficiency is associated with 

both macrocytic and megaloblastic forms of anaemia leading to symptoms such 

as fatigue, shortness of breath and light-headedness. In practice there is a 

plethora of effects, conditions and signs and symptoms vitamin B12 deficiency 

can cause  (see Table 1.3 for a summary).  

A more serious and irreversible effect of vitamin B12 deficiency is peripheral 

neuropathy, a result of demylienation of axons in the peripheral and central 

nervous system which can lead to neurological problems and in severe cases 

can lead to death (Bell, 2010).  
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Table 1.3. Clinical signs and symptoms of vitamin B12 deficiency 
Haematological  
     Anaemia, macrocytic and megaloblastic    
     Haemolytic anaemia 
     Neutrophil hyper-segmentation   
     Leukopenia 
     Thrombocytopenia  
Neurological  
     Peripheral polyneuropathy - myelopathy 
     Paraesthesia 
     Muscle weakness 
     Ataxia 
     Optic neuritis 
     Autonomic neuropathy  
Cognitive 
     Dementia   
     Memory impairment   
     Psychosis- depression 
     Delirium 
Gastroenterological    
     Reduced appetite 
      Weight loss   
     GI pain or disorders 
     Lingual atrophy 
Table constructed from reviews by (Wong, 2015, Moridani, 2006) 

 

Vitamin B12 deficiency is typically characterised by macrocytic and 

megaloblastic anaemia. Impaired DNA synthesis in rapidly dividing cells of bone 

marrow origin is the underlying mechanism. DNA synthesis is decreased due to 

inadequate formation of thymidine triphosphate because of impaired 

methionine synthase reaction, which needs vitamin B12 as a cofactor (see Figure 

1.4).  

At earlier stages, clinical manifestations are subtle and highly variable, but 

neurological disorders occur only during the later stages of vitamin B12 

deficiency and cognitive defects may occur in the absence of haematological 

signs (Allen et al., 1998, Lindenbaum et al., 1988).  

Vitamin B12 deficiency also causes peripheral neuropathy. Common symptoms 

include paraesthesia and numbness, muscle weakness and in advanced stages, 

symptoms of autonomic neuropathy (Aaron et al., 2005, Bell, 2010, Tesfaye et 

al., 1996). Cerebral disorders due to vitamin B12 deficiency include cognitive 
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impairment ranging from mild concentration impairment to dementia and 

psychosis (Girdwood, 1968, Reynolds, 2006) 

There have been several mechanisms suggested to explain the pathogenesis of 

neurological and cognitive manifestations from vitamin B12 deficiency. Impaired 

methylmalonyl CoA mutase activity can cause a decrease in succinyl CoA, which 

may decrease myelin production and subsequently lead to the incorporation of 

abnormal fatty acids into neuronal lipids (Chrast et al., 2011, Weir and Scott, 

1995). The other alternative hypothesis is that impaired activity of methionine 

synthase decreases the production of S-adenosylmethionine, and leads to 

myelin sheath damage and disrupted neurotransmitter metabolism (Briani et 

al., 2013).  

1.10.5 Diagnosis of vitamin B12 deficiency  

There is no precise or gold standard test for the diagnosis of vitamin B12 

deficiency. The diagnosis is usually based on identifying a low level of serum 

vitamin B12 with clinical evidence of deficiency, which responds to vitamin B12 

replacement therapy (Wong, 2015). The diagnostic approach to vitamin B12 

deficiency includes, firstly, the demonstration that the deficiency exists and, 

secondly, the identification of the cause of the deficiency.  

1.10.5.1 Total serum vitamin B12  

This is the standard and most common measurement for diagnosing vitamin B12 

deficiency as it is widely available. Serum vitamin B12 levels are most commonly 

measured using competitive immunoassays using direct chemiluminescence 

(Morovat et al., 2006). Vitamin B12 from the patient sample competes with 

vitamin B12 labelled with acridinium ester, for a limited amount of purified 

intrinsic factor. The assay uses sodium hydroxide to release the vitamin B12 

from the endogenous binding proteins in the sample. 

The sensitivity and specificity of the serum total vitamin B12 concentration for 

the diagnosis of vitamin B12 deficiency is questionable, and ranges from 30-

100% and 60-95%, respectively (Lindenbaum et al., 1990, Oosterhuis et al., 

2000, Moridani, 2006).  The interpretation of the assay results is affected by 
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many circumstances. Serum total vitamin B12 does not directly reflect the 

vitamin B12 status in tissues. This is because the majority of vitamin B12 is bound 

to plasma proteins, with around 20% bound to transcobalamin and is thus 

biologically active (Bor et al., 2004, Seetharam, 1999). Conversely, the vitamin 

B12 status in tissues may be inadequate even though the serum total vitamin B12 

concentration is in the reference range (Obeid et al., 2013). Falsely increased 

vitamin B12 levels are caused by liver diseases and moderate alcohol intake 

(Baker et al., 1998, Ermens et al., 2003). 

1.10.5.2 Methylmalonic acid  

In vitamin B12 deficiency, methylmalonic acid (MMA) accumulates due to 

decreased methylmalonyl-CoA mutase activity (Figure 1.1). Increased serum 

MMA concentration is a sensitive and very specific marker of vitamin B12 

deficiency (Kooy et al., 2013, Lindenbaum et al., 1990, Wong, 2015).  MMA can 

be quantified in both serum and urine; however, serum MMA has a greater 

sensitivity and specificity (Moridani, 2006). Renal insufficiency can falsely raise 

serum MMA but not urine MMA results (Loikas et al., 2007). MMA has been 

suggested to be used as a screening tool in cases where the elderly, who are 

prone to B12 deficiencies, have few recognisable symptoms (Bailey et al., 2011). 

MMA testing may not be suitable for monitoring because it is subject to 

variation and results do not reliably respond to B12 treatment. 

1.10.5.3 Homocysteine  

As shown in Figure 1.4, vitamin B12 and 5-MeTHF are required for the 

conversion of homocysteine to methionine by methionine synthase.  

Homocysteine accumulates both in vitamin B12 and folate deficiency. 

Homocysteine concentration is an independent risk factor for cardiovascular 

disease, especially among individuals with T2DM (Carlsen et al., 1997, Welch 

and Loscalzo, 1998). Elevation of homocysteine is a sensitive indicator of 

vitamin B12 deficiency. However, the specificity is poor (38-68%) because the 

concentration is increased by numerous other factors (Moridani, 2006). For 

example, folate and vitamin B6 deficiencies raise homocysteine (Selhub, 2002). 
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Additionally, there is high variation in homocysteine levels contributed to by 

pre-analytical factors, renal impairment and other diseases or conditions 

(Loikas et al., 2007, Nauck et al., 2001).  

1.10.5.4 Holo-transcobalamin II 

Holo-transcobalamin II (HC) is a measure of vitamin B12 directly available to 

cells as only this bound fraction of vitamin B12 enters the cells and thus is 

biologically active (Hvas and Nexo, 2003, Birn, 2006). HC is thought to reflect 

the immediate changes in vitamin B12 status (Nexo and Andersen, 1977). HC has 

excellent sensitivity and specificity, 100% and 89% respectively (Hvas and 

Nexo, 2003). Additionally HC is regarded as an early marker of changes in 

vitamin B12 homeostasis (Baker et al., 1998). 

1.10.5.5 The Schilling test 

Although there is no gold standard, the Schilling test is a useful test to diagnose 

several causes of vitamin B12 deficiency. The Schilling test is a dynamic 

functional investigation used for patients with vitamin B12 deficiency (Schilling 

et al., 1951, Schilling, 1953). The primary objective of the test is to determine 

whether the patient has pernicious anaemia through malabsorption of vitamin 

B12. The patient is given radiolabelled vitamin B12. The most commonly used 

radiolabels are 57Co and 58Co. An hour later an intramuscular injection of 

unlabelled vitamin B12 is administered. This is not enough to replete or saturate 

body stores of B12. The purpose of the single injection is to temporarily saturate 

B12 receptors in the liver with enough unlabelled vitamin B12 to prevent labelled 

vitamin B12 being taken up in the liver and other tissues. Therefore if vitamin 

B12 is absorbed from the intestine, it will be cleared and excreted into the urine. 

The patient's urine is then collected over the next 24 hours to assess the level of 

absorption. Under normal conditions, the ingested radiolabelled vitamin B12 will 

be absorbed from the intestine into circulation. However, as the body is 

saturated with vitamin B12, a large proportion of the ingested labelled vitamin 

B12 will be excreted in the urine. The Schilling test is less commonly used 

nowadays but has been utilised to show that metformin induces vitamin B12 
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malabsorption (Tomkin, 1973, Andres et al., 2003, Berger et al., 1972, 

Mazokopakis, 2012). 

1.10.6 Vitamin B12 reference range 

Published reference ranges for serum vitamin B12 and sensitivity and specificity 

for the diagnosis of clinically significant vitamin B12 levels is variable. Pieters et 

al., 2009 used the Bhattacharya technique to calculate the reference range. This 

technique allows estimates of reference values, to be not affected by disease or 

treatment. Using a cut-off of 2.5% at both ends of values produced a vitamin B12 

range of 150 to 630 pmol/L. Marks et al., 2004 used a hazard ratio and found 

that 90% to 95% of patients with vitamin B12 deficiency had levels <148 pmol/L 

(200 pg/mL), 5-10% patients had levels 148-221 pmol/L (200-300 pg/mL) and 

< 1% levels >221 pmol/L (300 pg/mL). The most accepted lower limit of normal 

is considered to be <148 pmol/L (200 ng/L) (Pieters et al., 2009, Carmel et al., 

2003, de Jager et al., 2010, Mazokopakis and Starakis, 2012). Additionally some 

groups report a borderline deficiency range of 150-220 pmol/L (Marks et al., 

2004, de Jager et al., 2010, Lindenbaum et al., 1990, Snow, 1999). The reported 

upper limit of normal is more variable than the lower limit, but concentrations 

>900 ng/L are generally accepted as highly elevated (Lindenbaum et al., 1990, 

Mazokopakis and Starakis, 2012, de Jager, 2014). Levels that exceed the upper 

limit are rarely suspicious in terms of aetiology, although patients with 

myeloproliferative disorders, can exhibit normal to high serum concentrations 

(Gauchan et al., 2012). 

1.10.7 Metformin & vitamin B12  

A common, potentially damaging, and well documented complication of 

metformin is vitamin B12 deficiency (Anfossi et al., 2010, Liu et al., 2006). 

Metformin was first described as a potential cause for vitamin B12 absorption in 

1969 (Berchtol.P et al., 1969). However, the first report of metformin induced 

vitamin B12 malabsorption was in 1971 when 30% of patients receiving 

metformin for more than 2 years exhibited metformin-induced vitamin B12 

malabsorption (Tomkin et al., 1971). This was identified through conducting the 
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previously described Schilling test. Since then there have been more than 85 

publications on metformin-induced vitamin B12 deficiency. Table 1.4 displays a 

few selected studies of vitamin B12 levels in metformin treated T2DM 

populations.  

Metformin-induced vitamin B12 deficiency is poorly recognised and not 

currently screened for or treated by the majority of physicians who prescribe 

metformin. Approximately 10-30% of patients with prolonged use of metformin 

develop vitamin B12 deficiency (<200 pmol/L) (de Jager et al., 2010, Ting et al., 

2006, Bell, 2010, Liu et al., 2006, Leung et al., 2010). Metformin dose and 

treatment duration appear to be the most consistent risk factors for vitamin B12 

deficiency in patients with T2DM (Kang et al., 2014, Ting et al., 2006). A 

significant reduction in vitamin B12 levels can occur as quickly as 3-4 months 

after the initiation of the metformin therapy (Bauman et al., 2000), while 

symptomatic deficiency may take as long as 5-10 years to manifest. Given the 

estimate that a normal person’s body store of 1-3 mg would be sufficient to 

meet the body’s biochemical needs for 3-6 years, under normal conditions 

(Allen, 2008), metformin appears to exert its effects more rapidly perhaps 

influencing the storage of vitamin B12 in the liver.  

A meta-analysis conducted by Niafar et al., 2015 used 29 studies incorporating a 

total of 8,089 patients and observed an increased incidence of vitamin B12 

deficiency in metformin users (Odds ratio = 2.45) (mean difference -88 ng/mL, 

P<0.0001). They concluded that metformin treatment is significantly associated 

with an increase in incidence of vitamin B12 deficiency.  Liu et al., 2014 compiled 

a smaller systematic review using 6 randomised controlled trials incorporating 

816 patients. Serum vitamin B12 concentrations were significantly lower in 

patients treated with metformin (Mean difference -74 ng/mL P < 0.0001). They 

concluded metformin reduced vitamin B12 levels in a dose-dependent manner.  
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Table 1.4. Comparison of studies  investigating vitamin B12 levels in metformin vs placebo T2DM patients 

Reference Country Groupa 
Duration of 
T2DM (Years) 

Number Male % Age (years) Metformin dose (mg) 
Duration of 
metformin 
treatment 

Vitamin B12 (ng/L) 

de Jager et al., 
(2010) 

Netherlands 
M 14±9 194 42 64±10 2050 daily 52 months 392±176 

P - 191 50 59±11 850 tds - 515±183 

Bauman et al., 
(2000) 

New York, USA 
M 6.9±6.1 14 100 49±10 2050 daily 3 months 227±22 

P 6±3.6 7 100 54±5 - - 375 ± 90 

Leung et al., (2010) Canada 
M >1  10 50 (67-91) - 3 months 183 

P - 10 50 (67-91) - - 471 

Liu et al., (2006) Hong Kong 
M - 56 45 80±6 - - 382±333 

P - 78 36 81±7 - <3 years 516±62 

Kos et al., (2012) Illinois, USA 
M - 142 30 67±14 1500 daily >4 years 496±282 

P - 205 30 67±14 - - 637±352 

Chen et al., (2012) Cardiff, UK 
M 14.1±7.1 152 57 66±11 1900±578 daily 8.5±5.4 years 219±106 

P - 50 52 69±12 - - 281±95 

Romero et al., (2012) Spain 
M - 81 31 72±12 1779 (425-2550) daily 43 months  394±184 

P - 28 43 75 ±8 - - 509±176 

Obeid et al., (2013) Germany 
M 8 (4-20) 49 47 64 (54-78) - - 347 (188-505) 

P 12.5 (2-32.4) 43 40 67 (52-82) - - 414 (259-642) 

Wile & Toth., (2010) Canada 
M 5.5±3.3 59 71 67±12 3390 g  >6 months 659 (1169) 

P 4.7±2.9 63 76 65±12 - - 313 (465) 
a Groups, M, metformin; P, placebo. Values represent mean±SD, while ranges are in parenthesis. Tds, three times daily; bd, twice daily. (Liu et al., 2006, Kos et al., 2012) (Calvo Rome ro a nd R amiro Loza no, 2012, Obeid et al., 2013, Wile and Tot h, 2010)  
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The majority of the clinical studies demonstrating that metformin leads to 

vitamin B12 deficiency refer to the work of Schafer, 1976 as an explanation for 

the mechanism behind the association between metformin and vitamin B12 

deficiency. The findings of this study suggest that the binding of biguanides 

causes a positive shift of a membrane's surface charge. Metformin induces a 

positive charge to the surface of the ileal membrane, which would act to 

displace divalent cations such as calcium. Therefore metformin could impair 

calcium availability and interfere with the calcium-dependent process of 

vitamin B12 absorption. The only evidence to suggest that metformin impairs 

calcium availability is from a clinical study which illustrated that metformin-

induced vitamin B12 deficiency was reversed with dietary supplements of 

calcium carbonate (Bauman et al., 2000).  

An in vivo study by Greibe et al., 2013 explored potential alternate 

malabsorption mechanisms for vitamin B12 caused by metformin. This study 

used rats injected subcutaneously with either metformin or control for 3 weeks. 

Following this exposure period the amount of vitamin B12 was located and 

regionalized using radio-labelled B12. They speculated the reduced serum 

vitamin B12 was attributed to a 36% increase of vitamin B12 observed in the 

livers of metformin treated rats, in comparison to controls. Interestingly their 

study showed that the total amount of absorbed vitamin B12 in both populations 

(metformin vs. control) were comparable, further suggesting that there is no 

metformin-induced malabsorption but rather a redistribution of the vitamin to 

the liver. These data may reflect the findings in humans receiving metformin, 

where the decrease in serum vitamin B12 is due to an increased displacement of 

vitamin B12 from serum to the liver.  However, the study has several limitations, 

most crucially was the intravascular administration of metformin, thereby 

removing the GI system.  

The most common method for treatment of vitamin B12 deficiency in the UK is 

the use of intramuscular hydroxocobalamin injections (British National 

Formulary, 2015). This is used both in a loading regimen followed by a 

maintenance administration for long term treatment (Mazokopakis and 

Starakis, 2012). The efficacy of oral vitamin B12 use to correct its deficiency has 
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resulted in comparable treatment success to that of the intramuscular route 

(Mazokopakis and Starakis, 2012). However, others suggest the amount 

available in general multivitamins (6 µg) may not be enough to correct the 

deficiency in T2DM patients (Reinstatler et al., 2012).  

1.11 Metformin drug transporters 

Membrane transporters are responsible for the sustainability of cell 

homeostasis and can be major determinants of a drug’s safety, efficacy and 

pharmacokinetic profile. Physiologically transporters play an important role in 

the absorption, distribution and elimination of cationic compounds, metabolites 

and toxins (Giacomini et al., 2010). There are many families of drug 

transporters including ATP binding cassette (ABCs) organic anion transporters 

(OATs); and organic anion transporting polypeptides (OATPs); and the organic 

cation transporters (OCTs) (Hediger et al., 2004). As this thesis interests are in 

metformin drug transporters, the rest of this introduction will focus of the OCTs. 

1.11.1. SLC Transporter Family 

The solute carrier (SLC) family consists of over 360 members in 52 gene 

families in humans which fall under the largest group of secondary membrane 

transporters in eukaryotes, the major facilitator family (MFS) (Saier, 2000, Zhou 

et al., 2007b).  

One subset of the SLC family is the SLC22A family; three sub-types of this class 

of transporters have been identified; Organic Cation Transporter 1 (OCT1), 

OCT2 and OCT3 (Giacomini et al., 2010).  All share a common structure of 12 

transmembrane alpha-helix domains (TMDs), a large extracellular loop with 

glycosylation sites and a large intracellular loop with phosphorylation sites 

hypothesised to be involved in intracellular signalling. The model OCT 

substrates for the OCTs include MPP+ (1-methyl-4-phenyl-pyridinium), TEA 

(tetraethylammonium), biogenic amines, and a number of clinically used drugs 

(Wright and Dantzler, 2004). 
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Metformin, is a substrate for all OCTs (Nies et al., 2009, Chen et al., 2010a, Yoon 

et al., 2013). As metformin does not undergo any known form of metabolism, 

the most important factors contributing to its pharmacological action are the 

drug transporters that distribute metformin to its target organs (Kimura et al., 

2005a, Nies et al., 2009). These transporters share >48% sequence identity and 

>65% sequence similarity and are thought to have evolved from a common 

ancestor (Saier, 2000). Unlike the majority of membrane transporters, OCTs 

perform bidirectional transport of substrates; therefore the expression of OCTs 

whether they are expressed apically or basolaterally governs their function. 

Although these transporters display similar selectivity and activity for some 

substrates (MPP+) they have distinct selectivity for others (cimetidine) (Kerb et 

al., 2002, Shu et al., 2003). The TMDs are most likely to be the sites of substrate 

specificity and recognition where conserved residues account for similar 

substrates affinities. OCTs transport a large number of diverse organic cations 

including primary, secondary, tertiary and quaternary amines with a net 

positive charge on the amine nitrogen atom at physiological pH (Zhang et al., 

2005). See Figure 1.5 for an illustrative summary of metformin drug 

transporters. 

1.11.1.1 Organic Cation transporter 1 

OCT1 is expressed at the sinusoidal membrane of hepatocytes with lower levels 

in the adrenal gland, lung epithelium, neurons, placental tissue and the spleen 

(Wang et al., 2002). OCT1 translocates a broad array of organic cations and 

drugs including histamine, serotonin, tetraethylammonium and metformin (Zair 

et al., 2008). As the liver is the target organ of metformin, OCT1 is regarded as 

the primary transporter that allows metformin to exert its pharmacological 

action in lowering peripheral blood glucose levels. There is conflicting evidence 

as to whether OCT1 is located in enterocytes of the GI tract.  Previous reports 

have suggested, but not provided evidence, that SLC22A1 (OCT1) is expressed 

on the basolateral membrane of enterocytes and thus aids in the cellular 

transport of metformin from the cell to the blood (Mulgaonkar et al., 2013, 

Koepsell et al., 2007, Jonker and Schinkel, 2004). In contrast, Han et al 2013 

(Han et al., 2013), discovered OCT1 was not expressed on the basolateral  
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Figure 1.5 Summary of Cationic transporters for metformin disposition in humans.  
PMAT, OCT1 and OCT3 are present on the lumen apical membrane (AP) and facilitate intestinal 
accumulation of metformin. OCT1 and OCT3 mediate uptake into hepatocytes, where MATE1 
facilitates the biliary excretion of metformin. OCT3 is also expressed on skeletal muscle cells and may 
be important in the disposition and efficacy of metformin. In the proximal tubule cells of the kidney, 
OCT2, located on the basolateral membrane (BL) mediates uptake of metformin from the blood, 
while MATE1 and MATE2K, located on the apical membrane, rapidly efflux metformin directly into 
the urine. There is conflicting eveidence to  the expression and location of these transporters, this 
figure represents a sumary  of the majority of expression studies. 
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membrane of human and mouse enterocytes, but in fact was on the apical 

membrane, and inhibition of the transporter did not influence basolateral 

transport of known OCT1 substrates. They and others have however found 

OCT1 to be located on the apical membrane of the Caco-2 cell line (Han et al., 

2013, Han et al., 2015, Proctor et al., 2008). However due to the heterogeneity of 

the cell line there is a possibility that cell lines may behave differently as 

compare to primary cells and express different drug transporters as compare to 

primary cells (Sambuy et al., 2005). 

 

1.11.1.2 Organic Cation transporter 2 

OCT2 is expressed in the distal renal tubules. OCT2 facilitates the uptake of a 

variety of cationic compounds including cimetidine and metformin from the 

circulation into renal epithelial cells (Zair et al., 2008). OCT2 has been 

established to have a greater affinity and capacity for metformin than OCT1 and 

thus to be able to rapidly eliminate metformin into the urine (Kimura et al., 

2005a). As illustrated in Figure 1.5, OCT2 expressed in the basolateral 

membrane of proximal tubule cells of the kidney, and mediates uptake of 

metformin from the blood, while Multidrug And Toxin Extruders 1 (MATE1) and 

MATE2K, located on the apical membrane, rapidly efflux metformin directly into 

the urine (see section 1.11.3). Human OCT2 protein expression has not been 

identified in the human jejunum (Muller et al., 2005). 

1.11.1.3 Organic Cation transporter 3 

OCT3 is expressed in a variety of tissues, primarily in skeletal muscle. Its 

strongest expression was found in skeletal muscle, kidney, placenta, brain, and 

heart (Nies et al., 2009).  A significant contribution in the handling of organic 

cations at the periphery has been confirmed in knock-out mice in which the 

SLC22A3 gene was disrupted. These mice showed impaired uptake activity of a 

monoamine OCT3 substrate in brain, heart and embryos (Zwart et al., 2001, 

Vialou et al., 2004). It has recently been acknowledged that muscle tissue is an 

important site for metformin to exert its pharmacological effects (Chen et al., 

2010a). Other studies have data suggesting OCT3 variants can affect their 
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activity and may contribute to inter-individual variation in cation distribution 

and clearance (Sakata et al., 2010, Chen et al., 2010a, Nies et al., 2011b).   

1.11.2 SLC22A Transporter genetics  

Genetic polymorphisms in cation-selective transporters have been identified 

and may have implications in metformin pharmacokinetics and dynamics 

(Giacomini et al., 2010). As metformin is not metabolised and excreted in its 

unchanged form in the urine, drug transporters are primarily responsible for 

the pharmacokinetics of metformin and their polymorphic variants may 

therefore be responsible for metformin side effects and the inter-individual 

variability observed in its efficacy. For example, genetic factors contribute to 

over 90% of the variability observed in metformin renal clearance (Leabman 

and Giacomini, 2003). The most widely studied polymorphisms involve single-

nucleotide polymorphisms (SNPs) for OCT1 and OCT2 that alter transport of 

metformin and other cationic compounds. SLC22A1 and SLC22A2 genes are 

regarded to be highly polymorphic with >90 and >40 registered SNPs resulting 

in altered amino acid changes, respectively, on the NCBI database. 

SLC22A1 and SLC22A2 genes are located on chromosome 6q26.  SLC22A1 

consists of 11 exons spanning 37 kb, the translated protein consists of 554 

amino acids. Adjacent to the SLC22A1 gene is SLC22A2 which also consists of 11 

exons spanning 42 kb; the translated protein consist of 555 amino acids. The 

two human proteins share 70% homology with each other and are conserved 

across species showing at least 74% and 82% homology with characterised 

mammalian orthologs.  

SNPs in these genes have been extensively characterised at different 

frequencies in ethnically diverse populations, (Shu et al., 2007, Shu et al., 2003, 

Kerb et al., 2002, Leabman et al., 2002, Itoda et al., 2004). Furthermore, Shu et al 

determined that several nonsynonymous SNPs (nsSNP) of OCT1 decreased 

metformin uptake in vitro (Shu et al., 2007). Therefore it is hypothesised that 

one or multiple nsSNP may lead to decreased metformin uptake in hepatic cells 

in vivo leading to decreased metformin action which may then alter the 

pharmacokinetic profile of metformin, leading to inter-individual variability to 
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metformin response. It should be noted that a GWAS did not find any significant 

association between metformin transporter genes and metformin response 

(Zhou et al., 2011).  

Table 1.5 Examples of non-synonymous mutations in OCT1 & OCT2 and effects of 

transport function. 

SL
C

2
2

A
1

 (
O

C
T1

) 

Exon SNP identifier Nucleotide 
Change 

a
 

Protein 
Variation 

Transport Activity 
b
 Prevalence 

(n=494) 
Ethical Bias 

c
 

MPP
+
 Metformi

n 

1 rs34447885 41 C>T S14F ↓ ↓ 0.013 AA 

1 rs12208357 181 T>C R61C ↓ ↓ 0.031 CA/ME 

1 rs35546288 253 C>G L85F ND ND 0.004 AA 

1 rs55918055 262 T>C C88R ↓ ↓ 0.005 EA 

2 rs683369 480 C>G F160L ↔ ↔ 0.032 AA/CA/ME 

3 Rs34104736 566 C>T S189L ↔ ↓ 0.002 CA 

3 Rs36103319 659 G>T G220V ↓ ↓ 0.002 AA 

4 Rs4646277 953 C>T P283L ↓ ND 0.0011 JP 

6 rs2282143 1022 C>T P341L ↓ ↓ 0.047 AA/AS 

6 rs34205214 1025 G>A R342H ND ND 0.012 AA 

7 Rs34130495 1201 G>A G401S ↓ ↓ 0.008 AA/CA 

7 rs628031 1222 A>G M408V ND ↓ 0.682 AA/CA/AS 

7 rs202220802 1256 ATGdel M420del ↔ ↓ 0.105 AA/CA/ME 

8 Rs35956182 1320 G>A M440I ↔ ND 0.002 AA 

8 rs34295611 1381 G>A V461I ↔ ND 0.004 AA 

9 rs34059508 1393 G>A G465R ↓ ↓ 0.016 CA 

9 rs35270274 1493 G>T R488M ↔ ↑ 0.02 AA 

SL
C

2
2

A
2

 (
O

C
T2

) 

1 rs8177504 160C>T P54S ↔ ND 0.002 AA 

2 rs45591037 481T>C F161L ↔ ND 0.002 CA 

2 rs45520136 493A>G M165V ↓ ND 0.002 AA 

2 rs8177507 495G>A M165I ND ↓ 0.004 AA 

4 rs316019 808G>T A270S ↓ ↓ 0.127 CA/AS/AA 

5 rs45592541 890C>G A297G ND ND 0.002 CA 

7 rs8177516 1198C>T R400C ↓ ↓ 0.006 AA 

8 rs8177517 1294A>C K432Q ↓ ↑ 0.006 AA 
a
 Complementary DNA (cDNA) numbers are relative to the ATG start site and based on the cDNA 

sequence from GenBank accession numbers NM_003057.2 (OCT1) NM_003058 (OCT2) . 
b
 Transport 

activity of 1-methyl-4-phenylpyridinium (MPP
+
) and Metformin, ↓, decrease; ↑, increase; ↔, 

similar; ND: Not determined.  
c
 AA: African-American; AS: Asian-American; CA, Caucasian; JP: 

Japanese; ME: Mexican-American; PA: Pacific Islander. Table constructed using data collated from 
(Shu et al., 2007, Shu et al., 2003, Kerb et al., 2002, Leabman et al., 2002, Itoda et al., 2004).  
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1.11.3 Other metformin drug transporters 

1.11.3.1 Multidrug And Toxin Extruders 

Metformin is a known substrate of the Multidrug And Toxin Extruders (MATEs), 

MATE1 (SLC47A1) and MATE2K (SLC47A2). Both isoforms function as 

bidirectional cation-selective transporters (Otsuka et al., 2005; Masuda et al., 

2006).  Human MATE1 has a higher affinity (apparent Km values) for metformin 

than MATE2K (Tanihara et al., 2007).  

Multidrug and toxin extrusion 1 (MATE1), SLC47A1, is located on the luminal 

side of the renal proximal tubules and bile canaliculi of hepatocytes (Boyer, 

2013). MATE1 is involved in transportation of metformin out of hepatocytes 

and renal cells into the bile and urine, respectively. MATE1 directly excrete 

metformin in its unchanged form into the urine. Several studies have shown 

genetic variants in the SLC47A1 gene leads to alterations in metformin 

elimination in the urine (Toyama et al., 2011, Choi et al., 2011) and can interplay 

with SLC22A2 (OCT2) in the elimination of metformin, but genetic factors could 

interfere with this interplay (Schwabedissen et al., 2010). 

A protein homologous of MATE1, MATE2-K, SLC47A2-K, is also expressed on the 

apical membrane of distal renal tubules, and with MATE1, directly excretes 

metformin in its unchanged form into the urine. Several studies have examined 

the effect of MATE genetic variants on metformin treatment response. They 

found promoter variants are associated with the pharmacokinetics and 

response to metformin in both healthy volunteers and diabetic patients (Stocker 

et al., 2013, Choi et al., 2011, Chung et al., 2013). Additionally two nsSNPs in 

MATE2K (Lys64Asn and Gly211Val), exhibited decreased transport activities, 

and Gly211Val resulting in complete loss of transport activity due to loss of 

protein expression on the cell surface (Kajiwara et al., 2009). 

1.11.3.2 Plasma membrane monoamine transporter 

The SLC29A4 gene codes for the plasma membrane monoamine transporter; 

(PMAT). First identified in 2004, PMAT is a 55 kDa metformin transporter 

comprising of 530 aa and 11 TMDs (Engel et al., 2004, Engel and Wang, 2005). 
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PMAT has been found to be expressed in a variety of tissues including intestine, 

brain and kidney (Engel et al., 2004, Xia et al., 2007, Chen et al., 2013, Han et al., 

2015). In the intestine, PMAT is expressed on the tips of the mucosal epithelial 

layer and transports metformin in a pH dependent manner. Under acidic 

conditions (Zhou and Wang, 2006) found decreased metformin transport with 

PMAT. Conversely, Xia et al., 2007 observed PMAT to be located on the apical 

surface of Madin-Darby canine kidney (MDCK) cells and exhibited increased 

MPP+ transport under acidic conditions. PMAT exhibits striking functional 

similarity to the OCTs in sharing a large portion of its substrate and inhibitor 

specificity with the OCTs (Engel and Wang, 2005, Chen et al., 2013, Han et al., 

2015). PMAT is less polymorphic than the other metformin transporters, OCTs 

and MATEs (Ho et al., 2012). The only study to investigate the effect of genetic 

variants in PMAT on metformin PK was from Duong et al., 2013. They 

investigated the effect of 11 PMAT SNPs on the population pharmacokinetics of 

metformin in T2DM patients. However, they found no association between 

PMAT polymorphisms and predicted metformin clearance.   

1.12 Metformin drug-drug interactions 

Metformin is commonly administered in combination with other drugs to both 

achieve glycaemic control and to treat other comorbidities associated with 

T2DM such as hypertension, cardiovascular disease and dyslipidaemia. This use 

of multiple drugs may lead to drug-drug interactions and alter the 

pharmacokinetics and efficacy of the drugs. As metformin is not metabolised in 

the liver, drug–drug interactions through the inhibition of metformin 

transporters can be clinically relevant. Recent drug–drug interaction studies 

suggest that proton pump inhibitors (PPIs) can inhibit OCT-mediated 

metformin transport in vitro which may lead to interference with metformin 

pharmacokinetics (Nies et al., 2011a). Metformin and PPIs have both been 

independently implicated in decreasing levels of vitamin B12 levels (Atwell et al., 

2012).  Long et al (Long and Atwell, 2012) found PPIs  and metformin alone 

were not associated with a significant difference in vitamin B12 deficiency, but 
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that  the combination was associated with a significant increase in vitamin B12 

deficiency.  

The Food and Drug Administration recognises that cimetidine significantly 

influences the excretion and disposition of metformin through transport with 

SLC22A2; however they do state this interaction could be partly mediated by 

MATE-1/MATE-2K transporters which are also expressed in the proximal 

tubule of the kidney.  

The H2 blocker, cimetidine, is associated with reduced renal tubular secretion 

and increased systemic exposure to metformin when both drugs are co-

administered (Somogyi et al., 1987). Table 1.6 provides a list of FDA recognised 

OCT inhibitors. Inhibition of MATEs, but not OCT2, is the likely mechanism 

underlying the drug–drug interactions with cimetidine in renal elimination 

(Gong et al., 2012, Wang et al., 2008).  Additionally, some anti-retrovirals have 

been shown to inhibit OCT1 and OCT2 transport in vitro. (Moss et al., 2013, 

Moss et al., 2015).  

 
Table 1.6. FDA recognised Major Human Transporters. 
Gene Transporter Tissue Expression Substrate Inhibitor     

SLC22A1 OCT1 Liver acyclovir, 

amamtadine, 

desipramine, 

ganciclovir, 

metformin 

Disopyramide, midazolam, 

phenformin, 

phenoxybenzamine, quinidine, 

quinine, ritonavir, verapamil 

SLC22A2 OCT2 Kidney, brain Amamtadine, 

cimetidine, 

memantine 

Desipramine, 

phenoxybenzamine, quinine 

SLC22A3 OCT3 Skeletal muscle, 

basolateral ileum 

cimetidine Desipramine, prazosin, 

phenoxy-benzamine 

Depending on the affinities for the OCTs, some substrates can act as inhibitors for other compounds. 
For example, phenformin is also a substrate of OCT1 but can inhibit other substrates due to its high 
binding affinity. 



Chapter 1 

43 

 

1.13 Methods 

1.13.1 DNA Sequencing 

In 1977 Frederick Sanger presented a DNA sequencing technique that would 

still be use nearly 40 years later (Sanger et al., 1977). This method uses dideoxy 

terminator DNA with automated gel electrophoresis and fluorescent terminator 

chemistry, later capillary gel-based systems (Valencia et al., 2013).  

Firstly, millions of copies of the sequence to be determined are purified or 

amplified using traditional polymerase chain reaction (PCR) methods. Reverse 

strand synthesis is performed on these copies using a known priming sequence 

upstream of the sequence to be determined and a mixture of 

deoxyribonucleotide triphosphates (dNTPs) and dideoxyribonucleotide 

triphosphates (ddNTPs). ddNTPs are modified nucleotides missing a hydroxyl 

group at the third carbon atom of the sugar which when incorporated in PCRs, 

terminate the extension reaction. The dNTP and ddNTP mixture causes random, 

non-reversible termination of the extension reaction; creating from the different 

copies molecules extended to different lengths. Following clean-up of free 

nucleotides, primers and the enzyme, the resulting molecules are sorted by their 

molecular weight, corresponding to the point of termination, and the 

fluorescent label attached to the terminating ddNTPs is read out sequentially in 

the order created by the sorting step. Sequencing allows all genetic variants to 

be identified within an amplicon when compared to a reference sequence. 

1.13.2 Molecular modelling 

Molecular modelling is a method for analysing 3D structures of proteins. There 

are only a few crystal structures available from the thousands of all known 

human protein sequences including transporters. 3D computer models can be 

derived from known protein crystal structures. One challenge of modelling 

membrane transporters is the generation of robust models using low levels of 

sequence identity; however it is appreciated membrane topologies are highly 

conserved, such as number of amino acids in transmembrane helices. Thus, low 
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sequence homology structural templates can be used to predict the 3D structure 

of a protein from a primary sequence.  The predicted models can offer a useful 

insight into the underlying mechanisms of drug transport across the plasma 

membrane.  Additionally the effect of protein variants can be analysed in to 

determine if they induce a structural effect leading to a conformational change 

or influence ligand binding. Structural modelling can contribute to the 

understanding of drug transport through elucidating the substrate binding 

regions, determining how substrates bind, and which residues are essential for 

substrate binding (Chang et al., 2006).  The application of 3D computational 

modelling techniques and algorithms to gain insight into drug transporters 

function has increased over the past decade because of the availability of high-

quality crystal structures, validated modelling algorithms and insights into 

evolutionary conservation. The importance of 3D structure-based molecular 

techniques has also been recognised and discussed in the International 

Transporter Consortium’s white paper (Giacomini et al., 2010). 

1.13.3 HPLC-MS/MS 

High-performance liquid chromatography (HPLC) coupled to mass 

spectrometry (MS) is a routine technique for the quantification of analytes from 

a biological matrix. The HPLC-MS technique functions in two main parts, 

separation from the analyte from a matrix, using HPLC  followed by detection 

and quantification of the analyte, using mass spectrometry  (MS) or ultraviolet 

(UV) (Lough and Wainer, 1995).  

HPLC in itself is a technique in used to separate component and analytes in a 

heterogeneous mixture. It relies on pumps to pass an pressurised liquid 

solvents containing the analyte through a column filled with a solid material, 

known as the stationary phase. Each component in the sample interacts 

differently with the stationary phase, causing different flow rates for the 

different components and leading to the separation of the components as they 

flow out the column.  

Mass spectrometers operate by converting the analyte molecules to a charged 

(ionised) state, with subsequent analysis of the ions and any fragment ions that 
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are produced during the ionisation process, on the basis of their mass to charge 

ratio (m/z) (Pitt, 2009). These analytes and other compounds are detected in 

proportion to their abundance; thus a mass spectrum of the molecule is thus 

produced. This technology is routinely used as the gold standard of measuring 

compounds in industry, academia and clinical laboratories. 

1.13.4 Population Pharmacokinetics 

Pharmacokinetic (PK) studies examine the time course of absorption, 

distribution, metabolism and elimination (ADME) of a drug or compound in the 

body in an attempt to explain biologic processes with mathematical expressions. 

PK is considered as ‘what the body does to the drug’ (Lin and Lu, 1997). 

Pharmacodynamics (PD) is considered to be ‘what the drug does to the body’ 

(Bonate, 2011). 

It is common knowledge that subjects receiving the same dose of a drug exhibit 

high PK variability, drug efficacies and toxicities. The population approach 

attempts to understand such PK/PD differences among a sub population and 

determine and classify the sources of variability. Population pharmacokinetics 

(PPK) can be defined as the study of the sources of variability in drug 

concentrations among individuals who are the target patient population 

receiving clinically relevant doses of a drug of interest. This knowledge can be 

applied to develop rational guidelines for individualised drug dosage regimens 

which can significantly increase efficacy and safety of a drug. 

Traditionally, the pharmacokinetics of a compound or drug were derived from 

intensive experimentation in healthy volunteers or highly selected patients in 

rich sampling data-studies. However, it is not always feasible to obtain such 

data (extensive sampling) in relevant patient populations. Consequently, data 

analysis techniques that are capable of utilising sparse data sets to obtain the 

relevant and representative pharmacokinetic information of target population 

are of great interest and their use is increasing. This type of analysis or the 

population approach has been applied to pharmacokinetic and 

pharmacodynamic data analysis since the 1970s. 
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PPK has been widely used in a number of drug studies over a wide range of drug 

classes during drug development including anticoagulants, antibacterial and 

anti-cancer drugs (Lee et al., 2012, Zhao et al., 2012, Menon et al., 2006).  

PPK aims to understand the mean population response and identify and explain 

the variability using demographic and biological data to derive information 

about an individual which may not be obtained from each individual directly. A 

nonlinear mixed-effects modelling approach is used to analyse data as a single-

stage approach. Instead of modelling data from each individual separately, data 

from all individuals are modelled in parallel meaning this method allows sparse 

data collection.  It has become widely accepted to the extent that the term 

population pharmacokinetics is commonly used synonymously with nonlinear 

mixed effects models.  

NONMEM® (ICON Development Solutions, Ellicott City, MD) is a software 

package developed by S. Beal and L.Sheiner in the 1970s for population PK 

modelling and is regarded as the ‘gold standard’ both in academia and the 

pharmaceutical industry (Beal and Sheiner, 1980, Sheiner and Beal, 1983). The 

NONMEM software is a regression program that specializes in non-linear 

systems. A non-linear system is when the response variable changes non-

linearly with changes in the predictor variable. An example of a non-linear 

system is the basic pharmacokinetic equation: 

𝐶(𝑡) =
𝐷𝑜𝑠𝑒

𝑉
 × 𝑒𝑒−

𝐶𝐿
𝑉

×𝑡 

The response variable (C) changes with the predictor variable (t), non-linearly 

as (t) is exponential.  Unlike linear equations, non-linear systems often do not 

have exact solutions, and therefore numerical integrators are required to 

perform regressions. 

The mixed-effects model is defined as including both a fixed effect and a random 

effect. Fixed effects are defined as known or observable properties of a subject 

that cause the descriptors to vary across the population. There are two types of 

random effects that arise from pharmacological data, inter-individual (between-

subject) variability and residual error (noise). Residual error is the difference 
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between the measured observed value and the models predicted values. 

Therefore it is also known as intra-individual (within-subject) variability which 

can arise from errors in the quantification assays, drug dosing and human error. 

1.14 Aims of the project 

Despite metformin being used for decades and being the most commonly 

prescribed anti-diabetic medication in the world today, there is a considerable a 

number of unknown questions about the mechanisms surrounding vitamin B12 

deficiency, the interaction with OCT1 and the pharmacokinetics of metformin. 

OCT1 (SLC22A1) and OCT2 (SLC22A2) are highly polymorphic drug transporters 

responsible for the hepatic and renal uptake of metformin, respectively. Studies 

have documented that variants in OCT1 and OCT2 can have an effect on 

transporter function altering the pharmacokinetic profile of metformin, which 

leads to inter-individual variability in metformin response. To date, there is no 

reported correlation between the systemic level of metformin, metformin dose, 

and vitamin B12 levels with a particular OCT functional mutation. It is 

interesting to note that metformin is distributed in the liver and kidneys which 

are sites of vitamin B12 storage and regulation respectively. Pharmacokinetic, 

biological, clinical and genetic data relating to OCT1 will be acquired to 

determine if there is a specific genotype associated with metformin induced 

vitamin B12 deficiency, with an overall aim to develop a genetic screen for 

susceptibility. 
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Using biological samples from a cohort of T2DM patients receiving metformin, 

this project aims to:  

 

1. Sequence the polymorphic metformin drug transporters, SLC22A1 and 

SLC22A2, genes to detect potentially new and existing genetic variants. 

 

2. Explore the potential effect of new and existing genetic variants on 

transporter function using bioinformatic algorithms and in silico 3D 

structural modelling and ligand docking techniques. 

 

3. Develop and validate a high performance liquid chromatography (HPLC) 

method to quantify the levels of metformin in human plasma.  

 

4. Incorporate the data generated from aims 1, 2 & 3 along with other 

associated biological and clinical data in a population pharmacokinetic 

model to assess the impact genetic variants have on metformin 

pharmacokinetics. 

 

5. Collate all the data to determine whether there is an association between 

metformin parameters, genetic variants in SLC22A1 and SLC22A2, and 

serum vitamin B12 levels. 
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2.1 Introduction 

The importance of genetic polymorphisms in drug metabolising enzymes 

influencing the pharmacology of a drug has been extensively studied and well 

established (Evans and McLeod, 2003). More recently the significance of drug 

transporters has been recognised to underlie the inter-individual differences in 

the pharmacology and ADMET of a drug. For example, the MHRA Drug Safety 

Update (May 2012) highlighted changes to simvastatin usage which can 

increase the risk of myopathy and rhabdomyolysis dependent on genetic 

polymorphisms in the membrane transporter SLCO1B1, encoding for OATP1B1. 

This transporter controls statin uptake from the blood into the liver and genetic 

polymorphisms have been associated with statin-induced myopathy (Carr et al., 

2013, Niemi, 2010).  

Absorption, distribution and excretion of most endogenous compounds and 

drugs are controlled by polymorphic and polyspecific membrane transporters 

expressed in a wide range of tissues including intestine, liver, kidneys, skeletal 

muscle, white blood cells and endothelial blood-brain barrier (Giacomini et al., 

2010). The largest superfamily of membrane transporters, the solute carrier 

family include OCT1 and OCT2 which are responsible for hepatic and renal 

uptake of metformin, respectively (Kimura et al., 2005a). The transporters are 

encoded by the SLC22A1 and SLC22A2 genes located on chromosome 6q26.  

SLC22A1 consists of 11 exons spanning 37 kb, the translated protein consists of 

554 amino acids. Adjacent to the SLC22A1 gene is SLC22A2 which also consists 

of 11 exons spanning 42 kb, the translated protein consists of 555 amino acids 

(Giacomini et al., 2010, UniProt, 2015). The two human proteins share 70% 

homology with each other and are conserved across species showing at least 

74% and 82% homology, respectively, with characterised mammalian orthologs 

(UniProt, 2015).  

Human OCT1 is primarily expressed at the sinusoidal membrane of hepatocytes 

with decreasing levels in the adrenal gland, lung epithelium, neurons, placental 

tissue and the spleen (Nies et al., 2009). OCT1 translocates a broad array of 

organic cations and drugs including histamine, serotonin, tetraethylammonium 



Chapter 2 

52 

 

and metformin (Zair et al., 2008). As the pharmacological target organ of 

metformin is the liver, OCT1 is regarded as the primary transporter that allows 

metformin to exert its pharmacological action in lowering peripheral blood 

glucose levels.  

Human OCT2 is primarily expressed in the distal renal tubules (Aoki et al., 

2008). OCT2 facilitates the uptake of a variety of cationic compounds including 

cimetidine and metformin from the circulation into renal epithelial cells (Zair et 

al., 2008). OCT2 has greater affinity and capacity for metformin than OCT1 and 

thus is able to rapidly eliminate metformin into the urine (Kimura et al., 2005a).  

Both SLC22A1 and SLC22A2 genes are regarded to be highly polymorphic with 

100 registered nsSNPs resulting in altered amino acid changes on the NCBI 

database. These SNPs have been extensively characterised at different 

frequencies in ethnically diverse populations, (Chapter 1, Table 1.5) (Shu et al., 

2007, Shu et al., 2003, Kerb et al., 2002, Leabman et al., 2002, Itoda et al., 2004). 

Furthermore, Shu et al (2003) determined that several nsSNPs of OCT1 

decreased metformin uptake in vitro (Shu et al., 2007). Therefore it is 

hypothesised that one or multiple nsSNPs may lead to decreased metformin 

uptake in hepatic cells in vivo leading to decreased metformin action to decrease 

peripheral blood glucose levels.    

Both genes are polymorphic and there are many known variants across both 

genes. Therefore sequencing these genes will potentially find both new and rare 

variants as both genes. In this chapter both SLC22A1 and SLC22A2 were 

sequenced including all exons, including intron-exon boundaries plus up to 2 kb 

of 5’UTR in a Caucasian population. The results obtained from this chapter will 

be used as covariates in population PK modelling. 
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2.2 Materials & Methods 

2.2.1 Study Subjects 

Seventy-five patients (45 male and 30 female; mean age 64 years; range 42-80 

years) receiving metformin treatment for T2DM were chosen for this study. 

Ethical approval for the study was obtained from the Liverpool Ethics Research 

Committee, University of Liverpool, all subjects gave informed written consent 

before participating. Relevant information on demographics, admission and 

clinical history was collected for each patient and recorded in an anonymised 

case report proforma. Table 2.1 displays summary of demographic, clinical and 

biological data for the patients used for this thesis. Blood samples were 

collected in EDTA vacutainers from 09/2005 – 10/2007 and were stored for 

DNA preparation at -20 oC until analysis in 11/2010.  

The time of day of metformin dosing ranged from 02:00 to 12:50 with a median 

time of 08:17.  The first of the blood samples taken ranged from 08:37 to 15:10 

with a median time of 11:19. Time from the dose received and blood sample 

taken ranged from 4 min to 9 hr 5 min with a median time of 3 hr. Time 

between the first sample of blood taken and the last ranged from 45 to 195 

minutes with a median time of 80 min. A summary of individual patient 

sampling times can is displayed in appendix figure A2.1. A total of 218 plasma 

samples were collected from 75 T2DM patients with up to three blood samples 

per individual were collected at random time intervals. 

2.2.2 Isolation of human genomic DNA  

Extraction was performed on the Chemagic Magnetic Separation Module I 

apparatus (Chemagen Auto-Q Biosciences, Germany), according to the 

manufacturer’s instructions. Five millilitres of blood was used per extract. 

Extracts were subsequently quantified and stored at 4oC. Yield average was 183 

ng/µL (range 25 – 333 ng/µL) yielding 91 µg DNA/sample (range 4.5 – 166 µg), 

(Average 260/280: 1.9; 260/230: 2.96). All DNA samples were diluted to 25 

ng/µL with 1x TE buffer.   
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Table 2.1 Summary of clinical variables 

N=75, Ethnicity:  73; White British, 1; White/Chinese, 1; Black Caribbean 

 Mean (SD)  Median Range  

Demography  
   

     Age (years)  64 (9.7)  65.39 42.3 - 80.6  

     Height (m)  1.67 (0.1)  1.67 1.45 - 1.91  

     Weight (kg)  91 (18.2)  92 51.2 - 140  

     BMI (kg/m2)  32.6 (5.1)  31.96 22.2 - 43.6  

     Ideal body weight (kg)  62 (11)  63 39 - 84  

     Lean body weight (kg)  55 (6)  56 41 - 70  

     Body surface area (m2)  2.00 (0.24)  2.03 1.46 - 2.61  

Biochemistry & Haematology  
   

     Vitamin B12 (ng/mL)  237 (96)  238 52 – 547  

     Folate (µg/ml)  8.6 (4.8)  7.8 1.6 – 20  

     Lactate (mmol/L)  2.10 (0.75)  1.75 0.8 – 3.9  

     Haemoglobin (g/dL)  13.2 (1.64)  13.3 8.8 – 16.1  

     Haematocrit (%)  38.9 ( 4.6)  39.2 26 – 48.2  

     Mean Corpuscle volume (Fl)  88.4 (4.8)  88.9 74.9 – 99.3  

Kidney function  
   

     Creatinine (µmol/L)  90.4 (27.8)  84 75 - 195  

     Urea (mmol/L)  6.8 (2.2)  6.4 3.3 - 13.6  

     CLCR (mL/min)  90.8 (33)  85 37 - 174  

     eGFR (mL/min)  74 (21)  73 33 - 138  

Liver function  
   

     Albumin (g/L)  42 (3.5)  42 32 – 48  

     Alanine aminotransferase  (g/L)  25 (15)  22 10 - 117  

     Alkaline phosphatase (g/L)  76 (24)  74 40 – 167  

     Gamma GT (U/L)  36 (31)  27 7 - 171  

     Bilirubin (µmol/L)  9 (5)  8 3 - 34  

Metformin parameters  
   

     Metformin total daily dose (mg)  2125 (793)  2000 500 – 3000  

     Metformin single dose (mg)  793 (222)  850 500 – 1000  

     Metformin total daily dose (mg/kg)  24 (10)  23 5 - 59  

     Metformin cumulative dose (kg)  6.99 (6.31)  5.10 0.15 – 31.24  

     Metformin plasma level (ng/mL)  1894 (1027)  1744 30 - 5387  

     Duration of metformin treatment (years)  8.05 (6.04)  6.44 0.41 – 29.03  

     Duration of T2DM (years)  10.17 (6.85)  8.55 0.41 – 31.67  
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 2.2.3 Gene sequences and polymerase chain reaction (PCR) 

The reference genomic and cDNA sequences of SLC22A1 and SLC22A2 were 

obtained from GenBank (NCBI Reference Sequence: NM_003057.2 and 

NM_003058.3, respectively) (Lander et al., 2001, Mungall et al., 2003). Primers 

were designed manually using the DNASTAR Laser gene SeqBuilder program to 

sequence all exons, including intron-exon boundaries plus up to 2 kb of 5’UTR 

sequence to capture variants in nearby regulatory elements (Table 2.2).  

Each region was amplified using 25 ng of genomic DNA using 0.25 µM of each 

primer as listed in Table 2.1 with Reddy-PCR Master Mix, 2.0 mM MgCl2 

(Thermo Scientific AB-0608/LD/A).  The PCR set up was performed in a pre-

PCR laboratory, free from PCR products and amplified using MJ Research PTC 

240 Tetrad 2 thermal cycler. The conditions were as follows: Lid control set 

constant at 105oC; 95oC for 10 min followed by 40 cycles of 94oC for 0.5 min, 

58oC for 0.5 min, 72oC for 1 min followed by a final extension of 72oC for 10 min. 

Each set of primers were initially tested with Roche DNA to ensure primers 

could amplify the required regions. All PCR products were run on a gel in a post 

PCR laboratory to confirm amplification. Three µL of each post-PCR product was  

run on a 2% agarose gel (EMBITec GE-4572) at 150 V, 400 mA for 40 min 

including a 100 bp ladder (Thermo Scientific, Superladder-Low 100 bp Ladder 

SL-100/LD). The buffer used was 1x TAE (EMBITec EC-1018)The gel was 

visualised using a UVP benchtop UV transilluminator. Primers were tested with 

reference DNA to check amplification (Appendix Figure A2.1). 

2.2.4 Post Amplification Purification  

Post PCR amplification products were treated with ExoSAP-IT reagent 

(Affymetrix) in order to remove unincorporated primers and dNTPs that may 

interfere with sequence analysis. ExoSAP-IT contains Exonuclease I and Shrimp 

Alkaline Phosphatase to degrade primers and dephosphorylate dNTPs 

respectively unconsumed in the PCR amplification reaction. To each 13 µL 

reaction volume, 2 µL of a 1:10 dilution of ExoSAP-IT was added. This was 

treated for 60 min at 37°C followed by 15 min at 85°C to inactivate enzymes.  
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Table 2.2. Primers used for the sequence analysis of SLC22A1 and SLC22A2. 

Amplified and 
sequenced 
region 

Forward Primer (5’ -3’) Reverse Primer (5’-3’) 
Amplified 

length 
(bp) 

SL
C

2
2

A
1

 (
O

C
T

1
) 

5’UTR 1 AGCATGTCAGGCTGCTGAGC GTTCAAACAAGTTATGGAAGG 507 

5’UTR 2 TAGTCAATATGTTTACACACAGG TAAGGTCATAAACTGCTTTGGC 453 

5’UTR 3 TCCAGCATAGCTAGGGCAGG CCATAGGTTTTGAGGGAACAGG 525 

5’UTR 4 GGTGCAGTGTATACTGCTTGG CCCTATGGTGCTGGTTTCAGG 463 

5’UTR 5 TTAGACCCCACTGACTCGCTC CAACCTGCTCCAGAATGTCATC 326 

Exon 1.1 GATGTTTCACACTTGGACAGC CCTGGCACTGTATAGTTCAGC 396 

Exon 1.2 TTCACACCTGACCACCACTGC GATATGGAACTGAACTTCATAGG 402 

Exon 2 ATGGAAGGGTGTAGTCCTGAC CACCACTGAGAACAGATTCGC 298 

Exon 3 GCATCCCACCATGCATGTCTG CCATTCTAGCCCATGTCCTGC 414 

Exon 4 AGAAGCCTGGGAGCAGGTGAG ATGCGTTATGCATGTGGACACC 507 

Exon 5 AGAAGCCTGGGAGCAGGTGAG TGCTTCACACCCATGACAAGG 399 

Exon 6 AGGTGGCTCTGCTCATGACAG CACCTGAGTATTCCACTGTCTC 254 

Exon 7 CTTCAGTCTCTGACTCATGCC CCTCATCTTTGTTCTCATTCC 408 

Exon 8 ATAGTCCAAGCATGACCCACC AACTGAGCAATGCTTGGCTGC 354 

Exon 9 TGAGCACTGGACAGCCACAG GTACTCACACTCAGTTCCACC 357 

Exon 10 TCCTCTCTTTGGCTGGCTGTG TTCCTCATAGCAGTTCTGGGAG 391 

Exon 11* GTGTACAACTTTGCAACAGTTCC GATACCAATAGCACCAACAGC 444 

SL
C

2
2

A
2

 (
O

C
T

2
) 

5’UTR 1 ACGAAGCAGAGTGCCTCTGTG TTCCCTGTATCTGTGGGTCTTC 578 

5’UTR 2 TAAGGCTCACGGCCAACACC AGCAGCTCGTGGAAACCAGAC 452 

5’UTR 3 CCACTGTTACACAGAAAGGCAG AAGAGCCGTCGGGATGCATG 525 

5’UTR 4 ACTTCAGGGTTGAAACGCAGG TGAGCTCACTCCCAGGATGC 510 

5’UTR 5 ATGGGCCAGCACTCAGATTCC CATGATCCTGCAGGCAGGAG 394 

Exon 1 GTGCACCTTTGAAGTCAGCTG TGCAGGCCAAAGAGATGTCCAG 747 

Exon 2 TACCCTAGCTGAGTTATGTCC ATGAAGGCCAGGAGATTGTGG 358 

Exon 3 CTATCAGTCTGTGCCTCCTGG TTTGGCAGCGAGGTTGCTTTG 389 

Exon 4 GTTCTAGTTTCCTGATAGCTGG CATGGAATTGGGCTCTTTGTG 429 

Exon 5 GAGATCCAACTGTATTAACATCC TTTGATACTTAAGGCCCTGGC 287 

Exon 6 GTTATTCCCTATGTGACCCAGG AGCGCTAATACCGGGATGAGG 321 

Exon 7 CTAGCAAGGAGATGGTCACAG GGTTTTCCTATCAATGGGCC 456 

Exon 8 GTCCTTACAGTCCCACTCTGG GGTAAGATATCCTTTGTCTGCAC 323 

Exon 9 GAGCAGTGTACACTATAGCTC GTTACTAATAGGCATGACACC 380 

Exon 10 GGAAACTCTAATTATAGACCTTG GTATGGTGTGAAGTATAAAGTC 309 

Exon 11 GAGAACCACCACTCAGAACAC TTGGCAGGATCTGGTCCCATG 448 

3’UTR 1 GAGACCGTTGCTGCTGTCATG TCACCTGTGTTACTGAAAGGC 409 

3’UTR 2 GTTGTCCAGAATGTATGTCAAG GTAGAGGTGAAATAGGGCAAGG 446 

Promoter Regions covered 2 kb upstream of 5’UTR. Each forward primer included the M’13 tag 
(ACTGTAAAACGACGGCCAGT) and the reverse included (ACCAGGAAACAGCTATGACC). 
Amplified length includes region, primer and M’13 universal tag. Each region was amplified to 
include a 5’ and 3’ 100 bp flanking sequence. 

 

2.2.5 Gender determination 

Quality control measures consisted of determining the sex of each sample and 

matching it with the patient’s clinical data using the amelogenin gene where 

expression differs between the X and Y chromosome. The amelogenin gene in 
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the X chromosome expresses a 6 bp deletion in intron 1 relative to the Y 

chromosome. Gel electrophoresis resolves two bands (112 and 106 bp) for male 

gDNA whereas one is resolved for female gDNA (Appendix Figure A2.2). 

Genomic DNA was amplified using primers and visualised on a 2 % agarose gel 

(EMBITec GE-4572) at 150 V, 400 mA for 25 min as a marker for each sex to 

compare against gender recorded for each clinical sample. 

 

2.2.6 Variant identification/Sequencing 

The PCR products were amplified using the ABI PRISM Big Dye* Terminator 

v3.1 Cycle Sequencing Ready Reaction Kit (Applied Biosystems). In brief, 1 µL of 

purified PCR product per sample was added to 9 µl of sequencing mastermix 

which comprised of 1 µL BigDye Terminator reaction mix V3.1; 7 µL sequencing 

buffer; 1 µL of primer at 3.2 pM. Primers from table 2.2 with M’13 tags were 

used for the sequencing reaction. Forward primer included the M’13 tag 

(ACTGTAAAACGACGGCCAGT) and the reverse tag included 

(ACCAGGAAACAGCTATGACC). The reactants were amplified using a Tetrad 2 

thermal cycler with the following conditions, lid control set constant at 105 oC; 

25 cycles of 96 oC for 10 sec, 50 oC for 5 sec and 60 oC for 4 min. Each PCR 

product was sequenced in both forward and reverse directions. Sequencing 

reaction products were purified by gel filtration using Performa® DTR 384-well 

gel filtration plates. Sequences were delineated with a ABI PRISM Sanger 

3730XL DNA analyser and data acquired on the ABI PRISM 3100 Data Collection 

Software Version 1.01. Sequencing reads ranged from 274-767 bp. 

Chromatograms were aligned and analysed using Consed Command line 

(version 16.0) program and variants recorded manually in an Excel 

spreadsheet. All variants were verified through evaluating each chromatogram 

using the Chromas Lite 2.1.1. software (Technelysium Ltd) using the forward 

and reverse sequence directions. Novel SNPs were re-sequenced or if a SNP was 

not visible in both forward and reverse directions. Variants were assigned a 

refSNP cluster identifier (rs#) using the National Centre for Biotechnology 

(NCBI) website using the GRCh38 (NC 000006.12) assembly. 
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2.2.7 Bioinformatic Analysis  

Prediction of transcription factor binding sites  

Mutations identified in the 5’UTR promoter regions were assessed to determine 

if they were expressed in predicted transcription factor putative-binding sites. 

The 5’UTR sequence was submitted to two databases to predict TF binding 

sites: BioBases’ TRANSFAC® (http://www.biobase-

international.com/product/transcription-factor-binding-sites) and Motif 

(http://www.genome.jp/tools/motif/). TRANSFAC uses positional weight 

matrices (PWMs) to search DNA sequences for potential transcription factor 

binding sites (Wingender et al., 2000). Motif utilises dynamic programming to 

find the best alignment between a query sequence and each profile entry in the 

PROSITE database (Sigrist et al., 2002). 

Prediction of functional consequences of mutations 

For novel and known mutations identified in both SLC22A1 and SLC22A2, four in 

silico algorithms were used to predict the effect coding SNPs had on protein 

function; the Grantham Matrix, the SIFT algorithm, the PolyPhen algorithm and 

the SNP3D algorithm. For each analysis, reference protein sequences for 

SLC22A1 and SLC22A2 were obtained from the UniProt database for analysis 

(accession numbers O15245 and O15244 respectively). All results were then 

collated in one table (Table 2.5) which applied a novel colour intensity to reflect 

the effect on protein function and compare the five algorithms. 

The Grantham Matrix  

This predicts the effect of substitutions between amino acids based on physical 

and chemical properties, including polarity, composition and molecular volume. 

An increasing/greater score is indicative of increasing chemical dissimilarity 

between the substituted amino acids (Grantham, 1974). 

 SIFT 

Sorting Intolerant from Tolerant [http://sift.jcvi.org/ (Ng and Henikoff, 2001)]  

predicts the functional effect of an amino acid substitution based on the 

alignment of highly similar orthologs determining whether the amino acid is 

http://www.genome.jp/tools/motif/
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evolutionarily conserved in protein families and calculates whether the 

biochemical parameters of the exchanged amino acids are similar or disparate. 

Conservation of amino acids has been indicative of normal transporter function. 

SIFT scores range from 0 to 1, scores near 0 reflect evolutionary conservation 

and intolerant amino acid substitutions whereas scores near 1 reflect 

evolutionary unconserved residues and thus tolerant to substitution.  

PolyPhen  

Polymorphism Phenotyping [http://genetics.bwh.harvard.edu/pph2/ (Sunyaev 

et al., 2001)] predicts the functional effect of substitutions using physical and 

comparative considerations such as the level of sequence conservation between 

orthologs, the phylogenetics of the protein, the physical and chemical properties 

of the substituted amino acid and the proximity of the substitution to predicted 

functional domains and characteristic structural features within the protein 

sequence. PolyPhen scores of less than 1.5 indicate functionally normal variants; 

scores between 1.5 and 2.0 are categorized as possibly deleterious and greater 

than 2.0 are categorized as probably deleterious.  

 SNPs3D  

This incorporates two previously developed methods to assess the impact of 

nsSNPs on protein function. The first identifies which amino acid substitutions 

significantly destabilize the folded state of the protein. The second analyses the 

extent of evolutionary conservation at the site of the altered amino acid.  A 

negative score predicts a SNP to be deleterious and a higher score relates to a 

higher confidence in prediction [http://www.snps3d.org/(Yue et al., 2006)]. 

 Evolutionary conservation of variant 

Shu et al., 2003 have established that determining evolutionary conservation of 

orthologous sequences to assess the impact of non-synonymous SNPs was a 

more accurate predictor of protein function. This study therefore determined 

whether the substituted amino acid residue is evolutionary conserved (EC) or 

evolutionary unconserved (EU) through alignments using NCBI BLAST software 

and the Gerhard and Wolff study (Burckhardt and Wolff, 2000) to label a 

residue EC or EU. A residue was classified EC based on sequence alignments 
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with 4 or 5 mammalian orthologs and highlighted red in Table 2.5 The orthologs 

used were mouse, rat, rabbit, porcine and bovine. All orthologs were at least 74 

% and 82 % identical for SLC22A1 and SLC22A2 to the human sequence, 

respectively. 

 

Prediction of potential splicing aberrations  

All intronic and intronic flanking coding mutations were analysed for their 

potential effect on splicing (pre-mRNA splicing) using the intronic splice site 

consensus sequence (Strachan and Read, 2011). SNPs located in a splice donor, 

acceptor or branch sites could influence alternative splicing and thus affect 

protein levels or functionality. 

 

Prediction of potential mRNA stability 

To determine if any SNPs located in the 3’UTR were expressed in adenylate-

uridylate-rich elements (AU-rich elements; AREs), the 3’UTR of SLC22A1 and 

SLC22A2 were submitted to AREsite, an online resource for the investigation of 

AU-rich elements (ARE) in vertebrate mRNA UTR sequences, 

[http://rna.tbi.univie.ac.at/cgi-bin/AREsite.cgi (Gruber et al., 2011)]. ARE 

contain the core motif, AUUA and are recognised ARE-binding proteins to 

determine RNA stability. 

2.2.8 Haplotype analysis  

The pattern of pairwise linkage disequilibrium (LD) between SNPs was 

visualised using the HaploView software version 4.1 (Barrett et al., 2005). 

HaploView calculates several pairwise measures of LD, which it uses to create a 

graphical representation. HaploView estimates the maximum-likelihood values 

of the four gamete frequencies, from which the multi-allelic D′, LOD and r2 

calculations derive. Conformance with Hardy–Weinberg equilibrium is 

computed using an exact test. The minor allele frequency (MAF) cut-off was 

defined as 0.05 rather than 0.01 due to the small sample size (n = 75). 
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2.3 Results 

To identify variants in SLC22A1 and SLC22A2 we sequenced all 11 exons per 

gene including 50-100 bp intronic flanking sequence as well as sequencing the 

3’UTR and 2 kb of the 5’UTR.  

2.3.1 SLC22A1 

Twenty-five variants were identified including some which had not been 

reported at the time. Overall 6 were located in the 5’UTR, 7 were intronic and 12 

were exonic comprising 9 nonsynonymous, 2 synonymous and a 3 bp del 

resulting in a methionine deletion. The novel variant was g.IVS8+14 A>G 

(Figure2.1). The variants are summarised in Table 2.3. The 12 coding SNPs 

(cSNPs) are displayed in Figure 2.2. The topology diagrams were produced  

using the transmembrane protein display software TOPO2 (UCSF), 

transmembrane protein display software available at 

http://www.sacs.ucsf.edu/TOPO2. This was produced through uploading 

primary OCT protein sequences with their respective known TMDs. OCT TMDs 

were predicted using the TMHMM Server v. 2.0. 

 

2.3.2 SLC22A2  

Twenty-five variants were identified with 7 being located in the 5’UTR, 4 

intronic, 7 exonic comprising 3 nonsynonymous and 4 synonymous, and 7 in the 

3’UTR. The SNPs are summarised in Table 2.4. The 7 cSNPs are displayed in 

Figure 2.4. 
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Figure 2.1 Chromatograms of novel SLC22A1 SNP 
(A) g.IVS8+14A>G Chr6:160143663. Box highlights nucleotide position. Each PCR products were 
sequenced in both directions. *Chromatogram is reverse direction post complimented using 
Chromas Software for an illustrative comparison. 
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Table 2.3. Summary of variants in SLC22A1 gene in 75 Caucasian patients receiving metformin for treatment of T2DM. 

 

Nucleotide 
Locationa 

Chromosomal position 
(GRCh38) 

Referenceb Nucleotide Change αα changed αα locatione HET HOM WT 

5’UTR  

-1620 160120316 rs9457840  T>A - - 0.013 - 0.987 

-1419 160120517 rs12110656  T>A - - 0.026 - 0.974 

-1198 160120738 rs57504133  A>G - - 0.013 - 0.987 

-605 160121331 rs182178700 G>A - - 0.013 - 0.987 

-430 160121506 rs73598465  T>A - - 0.026 - 0.974 

-59 160121877 rs536113777 C>T - - 0.013 - 0.987 

Exon 1  181 160122116 rs12208357  C>T p.R61C* ECM 0.184 - 0.816 

Exon 2  480 160130172 rs683369  C>G p.L160F TMD 0.395 0.053 0.553 

Intron 2  IVS2-26 160132206 rs45584532  C>T - - 0.276 0.013 0.711 

Exon 3  558 160132274 rs34134157  C>T p.N186N TMD 0.013 - 0.987 

Exon 3  566 160132282 rs34104736  C>T p.S189L TMD 0.013 - 0.987 

Intron 5  IVS5-7 160136537 rs7762846  C>T - - 0.276 0.013 0.711 

Exon 6  1022 160136611 rs2282143  C>T p.P341L* CYTO 0.013 - 0.987 

Intron 6  IVS6+22 160136672 rs35235578  C>T - - 0.013 - 0.987 

Exon 7  1201 160139792 rs34130495  G>A p.G401S* CYTO 0.026 - 0.974 

Exon 7  1222 160139813 rs628031  A>G p.M408V TMD 0.553 0.289 0.158 

Exon 7  1238 160139829 rs144322387 C>T p.A413V* TMD 0.013 - 0.987 

Exon 7  1260 160139849-51 rs202220802 ATGdel p.M420del TMD 0.224 0.026 0.750 
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Table 2.3 (continued). Summary of variants in SLC22A1 gene in 75 Caucasian patients receiving metformin for treatment of T2DM. 

 

a 
Location of nucleotide relative to ATG start site. 

b 
Obtained from NCBI database (GRCh38 assembly). 

c
 Number indicates location on amino acid in sequence. 

d
 Predicted 

location of amino acid in protein, ECM, extracellular matrix; TMD, transmembrane domain; CYTO, cytoplasmic. Note, no SNPs were found in the 3’UTR. MAF; minor allele 
frequency.  

  

 

 

 

 

 

 
Nucleotide 
Locationa 

Chromosomal position 
(GRCh38) 

Referenceb Nucleotide Change αα changed αα locatione HET HOM WT 

Exon 7 IVS7+7 160139866-73 rs113569197 TGGTAAGTins - - 0.566 0.171 0.263 

Intron 7  IVS7+34 160139901 rs9457843  C>T - - 0.250 0.013 0.737 

Exon 8  1320 160143584 rs35956182  G>A p.M440I TMD 0.026 - 0.974 

Intron 8  IVS8+14 160143663 Novel  A>G - - 0.013 - 0.987 

Exon 9  1393 160154805 rs34059508  G>A p.G465R* TMD 0.040 - 0.961 

Exon 10  1503 160155979 rs41267797  G>A p.V501V TMD 0.026 - 0.974 

Intron 10  IVS10- 21 160158495 rs622591  C>T - - 0.342 0.066 0.592 
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Table 2.4. Summary of variants in SLC22A2 gene in 75 Caucasian patients receiving metformin for treatment of T2DM. 

 
Nucleotide 
locationa 

Chromosomal position 
(GRCh38) 

Referenceb Nucleotide Change αα changec αα locationd HET HOM WT 

5’UTR  

-1604 160260361 rs3127573  T>C - - 0.240 0.013 0.747 

-1525 160260282 rs316023  A>G - - 0.440 0.120 0.440 

-1222 160259979 rs148965379 A>T - - 0.013 - 0.987 

-1189 160259946 rs146811048 C>T - - 0.013 - 0.987 

-956 - 954 160259711-13 rs34129302  GAA/- - - 0.280 0.013 0.707 

-922 160259681 rs183436020 G>C - - 0.027 - 0.973 

-246 160259003 rs55920607  C>T - - 0.013 - 0.987 

Exon 1  390 160258368 rs624249  T>G p.T130T ECM 0.493 0.387 0.120 

Intron 2  IVS2+32 160256582 rs2774230  C>G - - 0.400 0.547 0.053 

Intron 2  IVS2- 18 160250720 rs8177511  T>C - - 0.013 - 0.987 

Intron 2  IVS2-3 160250705 rs512275  C>A - - 0.027 - 0.973 

Exon 3  599 160250641 rs376744152 A>G p.M194V TMD 0.013 - 0.987 

Exon 4  808 160249250 rs316019  G>T p.A270S TMD 0.173 - 0.987 

Intron 4  IVS4-59 160247357 rs2279463  T>C - - 0.293 0.013 0.693 

Exon 7  1214 160243656 rs368002099 G>A p.D399N CYTO 0.013 - 0.987 

Exon 7  1222 160243648 rs8177515  C>T p.I401I CYTO 0.013 - 0.987 

Exon 10  1525 160224800 rs316003  G>A p.V502V TMD 0.387 0.067 0.547 

Exon 10  1594 160224731 rs139737555 C>A p.T525T CYTO 0.027 - 0.973 

3'UTR 

1686  + 108 160217325 rs8177524  C>A - - 0.053  0.947 

1686 + 361 160217072 rs3127594  A>T - - 0.293 0.013 0.693 

1686 + 389 160217044 rs3103353  G>A - - 0.293 0.013 0.693 

1686 + 462 160216971 rs3127593  T>A - - 0.293 0.013 0.693 

1686 + 490 160216943 rs2450975  C>A - - 0.400 0.067 0.533 
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Table 2.4 (continued). Summary of variants in SLC22A2 gene in 75 Caucasian patients receiving metformin for treatment of T2DM 

 
Nucleotide 
locationa 

Chromosomal position 
(GRCh38) 

Referenceb Nucleotide Change αα changec αα locationd HET HOM WT 

3'UTR 
1686 + 575 160216858 rs694812  A>G - - 0.213 - 0.787 

1686 + 621 160216812 rs3127592  A>G - - 0.293 0.013 0.693 

a Location of nucleotide relative to ATG start site. b Obtained from NCBI database (GRCh38 assembly). c Number indicates location on 
amino acid in sequence. d Predicted location of amino acid in protein, ECM, extracellular matrix; TMD, transmembrane domain; CYTO, 
cytoplasmic. MAF; minor allele frequency. 
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Figure 2.2. Predicted secondary structure and alignment of OCT1 with coding region SNPs.  

 

Nonsynonymous amino acid changes are shown in red, synonymous changes in green and an amino acid deletion is shown in blue. The transporters are predicted to consist 
of 12 transmembrane domains with both N and C terminus located intracellularly with a large extracellular loop between TMDs 1 and 2. Note that the majority of SNPs are 
located in the transmembrane domains, the domains responsible for OCT substrate specificity.  

 

SLC22A1 (OCT1) 
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Figure 2.3. Predicted secondary structure and alignment of OCT2 with coding region SNPs.  

  

Nonsynonymous amino acid changes are shown in red, synonymous changes in green and an amino acid deletion is shown in blue. The transporters are predicted to consist 
of 12 transmembrane domains with both N and C terminus located intracellularly with a large extracellular loop between TMDs 1 and 2. Note that the majority of SNPs are 
located in the transmembrane domains, the domains responsible for OCT substrate specificity.  
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2.3.3 5’UTR variants  

The 5’UTR was submitted to two transcription factor databases; TRANSFAC® 

and Motif, to identify potential transcription factor (TF) binding sites within 

SLC22A1 and SLC22A2 genes. TRANSFAC® identified two SNPs in potential 

SLC22A1 transcription binding sites; rs57504133 (g.-1198A>G) and 

rs73598465 (g.-430T>A). No predictive binding sites near or containing a SNP 

were found using the MOTIF server. TRANSFAC® predicted rs57504133 to  be 

present in a Zinc finger protein 333 (ZNF33) binding site ATAAT (Tian et al., 

2002) and rs73598465 is present in POU class 6 homeobox 1 transcription site 

CTCATTAT (Messier et al., 1993). These SNPs could potentially lead to the loss 

of a transcription site.One potential TF binding site was identified in the 

SLC22A2 5’UTR, Churchill domain containing 1, a zinc ion binding protein. Its 

recognition site,  CCCCCG, is located together with rs183436020 (g.-922G>C) 

(Lee et al., 2009a). Therefore this SNP could potentially lead to the loss of this 

transcription site. No SNPs present in both genes lead to the creation of a new 

binding site. 

2.3.4 Prediction of Potential SNP Functionality  

Exonic variants- This chapter applied four in silico algorithms: the Grantham 

Matrix, the SIFT algorithm, the PolyPhen algorithm and the SNP3D algorithm to 

predict the effect of each nSNP on protein function. These five algorithms were 

chosen based on popular use and citation number. The use of five algorithms 

displayed with colour intensities allowed for comparative analysis to determine 

if the results were similar between one another. Nine nsSNPs were identified in 

SLC22A1, but only five, p.R61C, p.P341L, p.G401S, p.A413V, and p.G465R, were 

predicted by all algorithms to have a significant negative effect on protein 

function. This was because the majority of scoring and predictive systems were 

in agreement that the change in amino acid residue would cause a damaging 

effect on protein function. Adjacently, p.L160F and p.M408V were predicted by 

all algorithms to not have a significant impact on protein function. p.M440I was 

predicted by three out of the five algorithms to have a  
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 Table 2.5. Summary of variant scoring systems 

The table displays the classification of scores this study has used. The addition of colour intensities to 
classifications shows more intense the colour, the more damaging the change is predicted to be to 
the protein. See Table 2.5 for colour intensities key. * indicates amino acid change will alter protein 
function based on predictive scoring systems. EC, evolutionary conserved; EU, evolutionary 
unconserved. See table 2.6 for key to scoring. 

 

negative effect, while conversely 3 out of 5 algorithms predicted S189L to not 

have a negative impact on protein. 

Three nsSNPs were identified in the SLC22A2 gene, p.M194V, p.A270S and 

p.D399N. As illustrated, the algorithms did not agree that there are differences 

in prediction. Nonetheless, the majority predicted that there was not likely to be 

a negative effect on protein function. p.M194V produced a negative SNPs3D 

score predicting that this substitution will have a deleterious effect on protein 

function. p.A270S was predicted to have some effect on altering protein function 

in Grantham and PolyPhen scores only. 

 

 

 

 

Algorithm 

Variant Grantham SIFT PolyPhen SNPs3D 
Evolutionary 
Conservation 

SL
C

2
2

A
1

 

R61C* 180 0.02 2.018 -0.21 EC 

L160F 22 0.66 0.132 0.08 EU 

S189L 145 0.49 0.525 0.18 EC 

P341L* 98 0.07 1.967 -1.96 EC 

G401S* 56 0.19 1.124 -1.71 EC 

M408V 21 0.27 0.617 0.66 EU 

A413V* 64 0.01 1.754 -0.93 EC 

M440I 10 0.12 2.203 0.31 EC 

G465R* 125 0 2.539 -3.15 EC 

SL
C

2
2

A
2

 M194V 21 0.83 0.539 -1.08 EC 

A270S 99 0.69 1.138 0.24 EU 

D399N 23 0.42 0.4 0.82 EC 
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Table 2.6. Key to variant scoring systems  

Algorithm Score Classification 

Grantham 

0 – 50 Conservative 

51 – 100 Moderately Conservative 

101 – 150 Moderately Radical 

> 151 Radical 

SIFT 

0.00 – 0.05 Intolerant 

0.051 – 0.10 Potentially Tolerant 

0.101 – 0.2 Borderline Tolerant 

0.201 – 1.00 Tolerant 

PolyPhen 

0.00 – 0.99 Benign 

1.00 – 1.24 Borderline 

1.25 – 1.49 Probable Damaging 

1.50 – 1.99 Highly Probable Damaging 

> 2.00 Most Probable Damaging 

SNPs3D 
Negative score Deleterious 

Positive score  Non-deleterious 

Evolutionary 
Conservation 

Evolutionary conserved (EC) Deleterious 

Evolutionary Unconserved 
(EU) 

Non-deleterious 

Key to Table 2.5. Although they represent discrete data, SNPs3D scores and evolutionary 
conservation were highlighted red if the score was negative or conserved, respectively, indicating a 
deleterious substitution. 

 

Intronic variants - Two variants located on the SLC22A1, IVS5-7C/T (rs7762846) 

and IVS7+9TGGTAAGT del (rs113569197), were located in splice acceptor and 

splice donor sites, respectively (Appendix Figure A2.3). IVS5-7 C/T was located 

in the splice acceptor site (SAS); this position does not have a specific 

preference for which pyrimidine (C or T) is present, and thus it is more likely to 

not cause a significant effect. The  

The intronic 8 bp insertion IVS7+9 TGGTAAGTins is located over the 3’ end of 

exon 7 and the splice donor site (SDS). Immediately after this 8 bp deletion is a 

repeat sequence TGGTAAGT. This leads to an alternative splicing site in the 
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Figure 2.4. 8 bp insertion in SLC22A1 exon 7. 
(A) rs113569197 (del/del), location of amino acids across exon 7 and exon 8 boundary. Exon 7; green, exon 8; blue. (B) Alternative splicing of rs113569197 (ins/ins) with 8 
bp insertion (red text) producing a longer length exon 7 leading to an alternative splice donor site and a premature stop codon in exon 8.  

  

(B) Ins/Ins 
(A) Del/Del 

TCA 

S 
424 

CCT 

P 
425 

GGT 

G 
426 

AAG 

K 
427 

TTG 

L 
428 

ACC 

T 
429 

TGC 

C 
430 

ACT 

T 
431 

GGT 

G 
432 

TAA 

STOP 

TCA 

S 
424 

CC T 

P 
425 

G AC 

D 
426 

CTG 

L 
427 

CAC 

H 
428 

TTG 

W 
429 

TTA 

L 
430 

AAC 

N 
431 

ATC 

I 
432 

ATA 

I 
433 

Exon 7 Exon 8 Exon 8 Exon 7 



Chapter 2 

73 

 

(ins/ins) genotype (Figure 2.4) leading to a premature stop codon. The 

premature stop codon produces a truncated protein 432 amino acids in length 

and 9 TMDs in comparison to the full length protein of 554 residues with 12 

TMDs. Heterozygosity was common  (57% of patients) with 17% and 26% 

homozygous for the insertion and deletion variant respectively. 

   3’UTR variants - 3’UTR SNPs were analysed to establish if any variants were 

located in AU-rich elements (ARE). ARE sites are cis-acting regulatory elements 

in the 3’UTR that are responsible for RNA stabilisation. There was no 3’UTR 

SNPs identified in the SLC22A1 gene unlike SLC22A2 where 8 variants were 

found. Analysis using the AREsite online resource identified 3 ARE in SLC22A2 

3’UTR, but, none of the 8 SNPs found in this cohort were present in these AREs.  

2.3.5 Haplotype analysis 

The LD plot reveals there is a high degree of linkage disequilibrium across each 

gene, but little LD between the two genes. The only variant to exhibit a LD 

across both genes was the intronic GAA deletion (rs34129302) in SLC22A2 

which was in slight LD with M408V, R61C and L160F, of which the latter three 

were all in complete LD. There was strong LD between the majority of the seven 

3’UTR SNPs in SLC22A2. 

In order to elucidate whether our observed allele frequencies in the metformin 

cohort were representative and comparable to the frequencies of a wider 

Caucasian population, we compared frequencies with those available on the 

International HapMap project (release #28, Aug 2010, CEPH (Utah Residents 

with Northern and Western European Ancestry). Allele frequencies for thirteen 

SNPs were available from the HapMap database for comparing MAF frequencies, 

including SLC22A1 (rs683369, rs34134157, rs2282143, rs628031, rs622591) 

and SLC22A2 (rs3127592, rs694812, rs3103353, rs316003, rs8177515, 

rs2279463, rs316019, rs624249). The comparison showed there were no 

significant deviations from Hardy-Weinberg equilibrium (HWE) either in the 

metformin group or the HapMap data (Chi-squared test (Χ2) P>0.05); Appendix 

Figure A2.4. 
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Figure 2.5. Linkage Disequilibrium across SLC22A1 and SLC22A2 genes in the 75 
metformin T2DM patients. 
Linkage disequilibrium plot shows SLC22A1 on the left with SLC22A2 on the right. LD pattern was 
generated using HaploView version 4.2 and strength of LD (D’ measure) is shown in increasing 
shades of pink, as depicted by the bars on the bottom right.  

2.4 Discussion 

In total, fifty variants were identified in this study, though only 75 individuals 

were sequenced and not the entire genes (only flanking exonic, 5’UTR and 

3’UTR). This highlights that SLC22A1 and SLC22A2 are highly polymorphic 

genes.  As sequencing was performed in year 2010, variants were initially 

assigned ‘rs’ numbers using the GRCh37 assembly, release date (March 3rd 

2009). The analysis first revealed 4 novel SNPs in OCT1 (g.-605G>A, g.-59C>T, 

c.1238C>T (p.Ala413Val) and IVS8+14A>G) and 6 novel SNPs in OCT2 (g.-

1222A>T, g.-1189C>T, g.-922G>C, c.599A>G (p.Met194Val), c.1214G>A 

(Asp399Asn) and c.1594C>A (Thr525Thr)). In December 2013, NCBI updated 

the dbSNP following the inclusion of 1000 genomes phase 1 novel data dbSNP 
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141 Release 106, assembly GRCh38. Subsequently 9 of the 10 original novel 

SNPs were assigned RefSNP identifiers. This left one novel SNP; SLC22A1, 

IVS8+14A>G. 

Alignment ambiguity of rs113569197 and rs202220802 variants 

An issue arose during the analysis of the 8 bp variant located on the seventh 

exon-intron border. Upon assigning the 8 bp variant, a refSNP cluster identifier 

(rs#) from the Single Nucleotide Polymorphism Database (dbSNP) hosted by 

the National Centre for Biotechnology (NCBI) database there was two to choose 

from. Each conformed to different insertions, the first located at 

Chr6:160139866 TGGTAAGT rs113569197) whereas the second was located 2 

bp downstream Chr6:160139868 GTAAGTTG (rs35854239). From viewing the 

Sanger sequencing chromatograms, it is impossible to determine which the is 

true location of the 8 bp variant, as both rs113569197 and rs35854239 are 

possible (Figure 2.6). Sequencing traces from heterozygous samples read up to 

the end base of GTAAGTTG (rs35854239), however as there is a tandem repeat 

the true point where the insertion occurs is indeterminable. 

To determine the true location of the 8 bp insertion we used the UCSC Genome 

Browser to analyse if the any of the base pairs or region are evolutionarily 

conserved. The analysis revealed that TGGTAAGT (rs113569197) was not 

conserved in any other mammalian species, including primates, whereas the 

last two bp of GTAAGTTG (rs35854239) ‘TG’ were conserved in pig (porcus, 

porca), alpaca (Vicugna pacos) and Bactrin camel (Camelus ferus) only (Figure 

2.7). The evolutionarily conservation, within the region, dictates that the true 

deletion is more likely to be TGGTAAGT (rs113569197), and not GTAAGTTG 

(rs35854239). 

The same ambiguity of a deletion can be applied to the 3 bp deletion in exon 7; 

M420del located just 17 bp upstream of rs1135699197. The 3 bp deletion is 

registered as both ATGdel rs202220802 (Chr6:160139849) and GATdel 

rs72552763 (Chr6:160139851) which from viewing individual chromatograms 

are both possible deletions (Figure 2.6). Interestingly both options confer a 

Methionine deletion at position 420 despite differing in location by 2 bp.   
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Figure 2.6. Ambiguity alignment of 8 bp insertion and M420del 
(A) 8 bp (del/del), (B) 8 bp (ins/ins) highlighting rs113569197 (TGGTAAGT) in yellow and the alternative rs35854239 (GTAAGTTG) in blue. Both rs numbers show that either 
is possible according to the sanger sequencing. (C) M420 (del/del). (D) M420 (ins/ins) highlighting rs202220802 (ATG del) in yellow an the alternative rs7255763 (GAT del) in 
blue, both deletions result in a methionine deletion at position 420. 
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Alignment ambiguity arose in both TGGTAAGT (rs113569197) and ATGdel 

rs202220802 as the first two base pairs of the deletion were repeated following 

the deletion.  

Alignment ambiguity in a number of genes has been previously reported in 

phylogenetic studies. There are several methods which can distinguish between 

ambiguous deletions/insertions without the need to conduct cDNA experiments 

including fragment-level alignment and the Elison method (Lee, 2001). However 

alignment ambiguity does not seem to be evaluated within human sequences. 

Alignment ambiguity arose as the first two base pairs of the deletion were 

repeated following the deletion, resulting in two feasible deletions. The 

ambiguity of deletions has been hypothesised to contain hierarchical signals and 

may be phylogenetic. 

Figure 2.7. Evolutionary conservation of SLC22A1 exon 7 - intron 7 boundary The 

conservation of this region across a wide range of mammalian species shows TGGTAAGT 
(rs113569197) is not conserved in any other mammalian species, including primates. This 
strongly suggests the true variant is TGGTAAGT and not GTAAGTTG (rs35854239).  
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Significance of  the rs113569197 insertion 

On first inspection, the presence of the 8 bp insertion appears to not influence 

the amino acid sequence of OCT1 due to the presence of a repeat 8 bp sequence 

(TGGTAAGT) immediately following the 8 bp insertion. However, the 8 bp 

insertion is located at the 3’ end of exon 7 and the splice donor site (SDS), and 

thus may influence alternative splicing through extending exon 7 by 8 bp 

conforming to a new SDS. The new SDS site is then predicted to produce a 

premature stop codon 6 amino acid residues downstream from the insertion. 

This would produce a truncated OCT1 protein of 432 amino acids in length in 

comparison to the full length transcript of 554 residues.  The  possible effects of 

the 8 bp insertion on OCT1 expression levels has been previously determined by 

only one group, (Grinfeld et al., 2013), who analysed and compared SLC22A1 

mRNA levels in individuals expressing rs113569197 variants.  They amplified 

exon 7 through to the start of exon 8 in SLC22A1 cDNA. They found the 8 bp 

insertion produced a longer transcript length, suggesting the insertion is 

included in the mRNA which would produce a premature stop codon, leading to 

a truncated OCT1 protein.  Interestingly they found that the (ins/ins) variant 

was associated with impaired responses to imatinib, an OCT1 substrate, in 

patients with chronic myeloid leukaemia. It is also worth noting that poor 

responses to imatinib were also observed in patients expressing p.M420del 

which was expressed in cis with the 8 bp insertion (Giannoudis et al., 2013, 

Grinfeld et al., 2013). 

The 8 bp insertion has also been previously documented by Tarasova et al., 

2012, who described the insertion using  the rs36056065 (GTAAGTTG) and not 

rs113569197 (TGGTAAGT) (refer to Figure 2.6). Note that rs35854239, as 

described in this chapter, and rs36056065 both refer to GTAAGTTG. 

Interestingly they found a significant association between rs36056065 (ins/ins) 

and the presence of metformin induced gastrointestinal side effects. These side 

effects included diarrhoea, flatulence, abdominal pain and vomiting within 1 

year after starting metformin therapy. Given the findings of Grinfeld et al (2013) 

together with our prediction of the 8 bp insertion leading to a truncated OCT1 

protein, one could hypothesis the 8 bp insertion may lead to metformin induced 
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gastrointestinal side effects through lack of OCT1 protein expression or reduced 

level of  function from a truncated OCT1 transcript. They state that rs36056065 

and rs628031 (p.M408V) are in strong LD with each other and were both 

statistically associated with GI side effects. It is therefore possible that their 

findings could be caused by any of the variants, or a combination of both.  The 

observed MAF for rs113569197 in this study (0.40) was comparable to what 

was observed in the previously reported studies by Grinfeld et al and Tarasova 

et al (0.39 and 0.42 respectively). 

 

Predictive power of algorithms 

Non-synonymous SNPs can be interpreted through the use of algorithms which 

analyse variants using specific criteria such as evolutionary conservation, 

location within the protein sequence, functional domains and physical and 

chemical properties of the substituted amino acid residue. The algorithms may 

permit the choice of which SNPs to choose to determine the effect on 

transporter function in future studies. The four algorithms were chosen based 

on popular use and citation number. The use of four algorithms and 

evolutionary conservation analysis allowed for comparative analysis and to 

determine if the results were similar between one another. In OCT1, p.R61C, 

p.P341L, p.G401S, p.A413V and p.G465R were predicted to negatively affect 

protein function whereas p.L160F and p.M408V were not. The algorithms were 

not in agreement with p.S189L and p.M440I predictions; nonetheless the 

general consensus was that p.S189L was not detrimental to protein function 

and p.M440I was. The bioinformatic analysis in this study denotes that not all 

algorithms agree that a particular amino acid change will or will not 

significantly affect protein function. However, the novel application of colour 

intensity to the predictive scores in this chapter illustrates the majority of 

scoring systems are in agreement with the effect each nsSNPs has on protein 

function. In regards to this study, evolutionary conservation appears to be a 

simple and accurate method for predicting nsSNPs on OCT1 protein function. 

This is supported by Rudd et al., 2005 who revealed that the EC as well as 
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Grantham scores were accurate predictors of transport function in OCT1 

variants.  

Shu et all., 2007 have observed the effect of OCT1 variants in HEK293 cells and 

measured the activity of metformin uptake. The nsSNPs predicted to be 

detrimental to protein function in OCT1 (p.R61C, p.P341L, p.G401S and 

p.G465R) exhibited reduce metformin uptake. This demonstrates that the 

prediction algorithms give an accurate evaluation of protein function.  

Scoring systems can only predict the functional effect of SNPs, and thus 

functional studies are necessary to determine the effect they can have on 

transporter activity. Furthermore the scoring systems do not take into account 

multiple nsSNPs in proteins which could have an additive or co-regulatory effect 

on protein function. For example, in this cohort there was high LD between 

p.R61C and p.L160F and between p.M420del and p.M408V in SLC22A1. The 

effect of the co-expression of these variants in one protein on function cannot be 

predicted using the algorithms. Similarly in SLC22A2, p.M194V and p.A270S 

were found in a single individual, although both variants were not predicted to 

be detrimental to protein function. Therefore the combination of two or more 

amino acid variants on the same transporter could significantly alter the scores 

predicted with the algorithms. Shu et al., 2007 has examined the effect of 

combinations of variants in OCT1 transport uptake of 1-methyl-4-

phenylpyridinium (MPP+). The results appear to suggest that if one variant in 

the combination is predicted to be detrimental to protein function, then the 

OCT1 transport activity is significantly decreased. Therefore, assessing if one 

amino acid is predicted to be detrimental to protein function may be an accurate 

predictor of protein function, in a transporter expressing multiple variants. 

However, this needs to be assessed with other variants across other proteins 

using predictive algorithms.   

Of the 21 exonic variants identified across both genes, six were synonymous; i.e. 

SNPs which do not change the amino acid. However, it must not be assumed that 

a synonymous SNP will not affect protein function or expression. It is known 

that sSNPs can affect mRNA splicing, stability and protein folding (Hunt et al., 
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2009). Additionally Se´mon et al., 2006 have discovered that usage of specific 

tRNAs varies significantly between tissues. For example, rs316003 (p.V502V) in 

SLC22A2 is a GTG to GTA variant  which human tRNA levels are 46% and 12%, 

respectively (as a fraction; codon levels per amino acid) (Nakamura et al., 2000). 

Therefore the introduction of a rare codon may affect protein levels due to lack 

of translational machinery which can lead to a misfolded or truncated protein. 

However Se’mon et al., 2006 state the effect is very weak in that variability in 

synonymous codon usage between tissues accounts for 2.3% of the total 

variability. Therefore although sSNPs are predictably inert, they could 

potentially affect transporter expression.  

 

Although no bioinformatic analysis could be applied to p.M420del (SLC22A1), its 

evolutionary conservation could be determined to predict its function. 

Examination of orthologs identified M420 to be conserved in 4 of 5 mammalian 

species analysed in this study (unconserved in rabbit). Therefore this deletion 

could have a significant impact on protein function. Furthermore M420 has a 

predicted location in transmembrane domains, which are regarded as important 

for OCT1 substrate specificity and activity.  

 

Potential effect of 5’UTR variants 

In total, 13 SNPs were identified within the 5’UTR of both genes. The 

transcription factor database, Transfac, predicted rs57504133 to  be present in 

a Zinc finger protein 333 (ZNF333) binding site ATAAT (Tian et al., 2002). 

rs73598465 was present in POU class 6 homeobox 1 transcription site 

CTCATTAT (Messier et al., 1993). ZNF333 is highly expressed in the heart and to 

a lesser extent the liver (Tian et al., 2002), and therefore rs57504133 may have 

an impact on SLC22A1 expression in the liver through disrupting ZNF333 

binding. Conversely POU6 mRNA expression is absent in liver or kidney tissue, 

but present in skeletal and brain tissue (Messier et al., 1993). 

In SLC22A2 rs183436020 may be located within the TF Churchill recognition 

site, but, it has only been found to be expressed in liver and not the primary site 
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of SLC22A2 expression, the kidneys (Lee et al., 2009a). Therefore we predict 

that rs183436020 will not have a significant impact on OCT2 expression. 

To date, there are a few known TFs or promoters for the SLC22A genes. The 

most widely investigated to a SLC22A1 promoter is regulation by Hepatocyte 

nuclear factor-4 alpha (HNF-4 alpha) (Saborowski et al., 2005, Saborowski et al., 

2006, Kajiwara et al., 2008). This has been shown to trans activate the hOCT1 

promoter in a dose-dependent manner. Two putative binding sites for the liver-

enriched hepatocyte nuclear factor are located  between nucleotides -1479 and -

1441 upstream of the transcription initiation site (Saborowski et al., 2006). 

However, the nearest 5’UTR SNP near these regions was rs12110656 (g.-1419), 

22 bp from -1441.  

In adjacent, peroxisome proliferator agonist receptor (PPAR), a murine SLC22A1 

TF, has been shown to influence OCT1 expression (Nie et al., 2005). Additionally, 

functional assays treated with PPAR agonists displayed significant increases in 

OCT1 transport uptake, through transcriptionally increasing SLC22A1 

expression. As this was identified in mice, the TF may not be responsible for 

human SLC22A1 expression. The PPAR regulatory element (PRE) is located 

2392 bp upstream from the ATG start codon. In this study we didn’t analyse this 

region as we sequenced only the first 2 kbp upstream from the start codon.  

Interestingly DNA methylation of the promoter region for the OCT2 has been 

shown to contribute to OCT2 expression (Aoki et al., 2008). Aoki et al have 

discovered a CpG site at -85 bp from the ATG start site which is hypomethylated 

in kidney tissue and thus enhances gene transcription. However, all the 5’UTR 

variants in this study were identified between -246 and -1604bp from ATG and 

not near the CpG sites. 

In conclusion, this chapter identified 50 genetic variants in SLC22A1 and 

SLC22A2 genes including 1 novel SNP. There is little known about the 

significance of the 8 bp insertion and its potential effect on truncating OCT1 

which may lead to decreased transporter function or expression. Based on 

previous studies, findings with rs113569197 (Grinfeld et al., 2013) and our 

predictions, this presents itself as a potential variant which may drastically 
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influence metformin pharmacokinetics and potentially vitamin B12 levels in our 

metformin cohort. Further studies are warranted to confirm this prediction and 

to assess the impact of multiple variants on a single transporter. The genetic 

data generated will be used in subsequent chapters as covariates for population 

pharmacokinetic modelling and statistical analysis.  
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3.1 Introduction 

Membrane transporters are responsible for the sustainability of cell 

homeostasis and can be major determinants of a drug’s safety, efficacy and 

pharmacokinetic profile. Physiologically transporters play an important role in 

the absorption, distribution and elimination of cationic compounds, metabolites 

and toxins (Giacomini et al., 2010). 

The solute carrier (SLC) family in humans consists of over 360 members in 46 

gene families which fall under the largest group of secondary membrane 

transporters in eukaryotes, the major facilitator family (MFS) (Saier, 2000, Zhou 

et al., 2007b). The SLC22A family all share a common structure of 12 

transmembrane alpha-helices domains (TMDs), a large extracellular loop with 

glycosylation sites and a large intracellular loop with phosphorylation sites 

hypothesised to be involved in intracellular signalling. Three sub-types of this 

class of transporters have been identified, organic cation transporters (OCTs) 1-

3. These transporters share >48% sequence identity and >65% sequence 

similarity and are thought to have evolved from a common ancestor (Saier, 

2000). Unlike the majority of membrane transporters, OCTs perform 

bidirectional transport of substrates; therefore the expression of OCTs whether 

they are expressed apically or basolaterally governs their function. Although 

these transporters display similar selectivity and activity for some substrates 

(MPP+), they have distinct selectivity for other substrates (e.g. cimetidine) (Kerb 

et al., 2002, Shu et al., 2003). The TMDs are likely to be the sites for substrate 

specificity and recognition, where conserved residues account for similar 

substrates affinities. OCTs transport of a large number of diverse organic 

cations including primary, secondary, tertiary and quaternary amines with a net 

positive charge on the amine nitrogen atom at physiological pH (Zhang et al., 

2005). 

Metformin, a substrate for OCT1-3, is the most commonly prescribed anti-

diabetic drug in the world today (Graham et al., 2011). As metformin does not 

undergo any known form of metabolism, the most important factors 
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contributing to its pharmacological action are drug transporters which 

distribute metformin to its target organs and enables its excretion via the 

kidneys (Kimura et al., 2005a, Nies et al., 2009). 

OCT1 is expressed at the sinusoidal membrane of hepatocytes (Wang et al., 

2002). As the liver is the target organ of metformin, OCT1 is regarded as the 

primary transporter that allows metformin to exert its pharmacological action.  

OCT2 is expressed in the distal renal tubules. OCT2 has a greater affinity and 

capacity for metformin than OCT1 and is thus able to rapidly eliminate 

metformin into the urine (Kimura et al., 2005a). These transporters are highly 

polymorphic and several variants alter the pharmacokinetic profile of 

metformin, with the potential to lead to inter-individual variability in metformin 

response. 

The 3D structures of three members of the major facilitator superfamily LacY 

permease E.coli (Abramson et al., 2003), glycerol-3-phosphate transporter 

(GlpT) E.coli (Huang et al., 2003) and the oxalate transporter (OxlT) from 

Oxalobacter formigenes (Hirai et al., 2002) have been reported. Known crystal 

structures of transmembrane proteins have been used to predict the 3D 

structures of other proteins which share common structural properties. For 

example, the rat OCT2 structure has been predicted using the LacY permease 

crystal structure as a template (Zhang et al., 2005). Additionally these structures 

can be used to screen a large library of drugs and compounds, predicting 

potential substrates and inhibitors of transporters. 3D-models have been 

routinely and successfully used to screen large databases and identify possible 

transporter ligands through docking experiments and providing a rationale for 

drug design (Grant, 2009). This can also offer an insight to which amino acid 

residues are responsible for substrate recognition and provide an explanation of 

the effect of genetic variation on transporter activity. As the tertiary crystal 

structures of OCTs are unknown, this chapter aims to use computational 

modelling techniques to predict OCT structure and visually assess the impact 

genetic variants have on metformin transport. This may provide an illustrative 

mechanistic explanation of OCT function and metformin transport.  
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3.2 Materials & Methods  

3.2.1 Target template analysis 

In order to predict a 3D model from a primary protein sequence, a crystallised 

structure of a related protein is required to act as a template. OCT primary 

amino acid sequences were obtained from UniProtKB with the following 

accession numbers: hOCT1 (O15245) and hOCT2 (O15244) and used as probes 

to search for homologous sequences with acquired 3D structures using Phyre2 

(Wass et al., 2010, Kelley and Sternberg, 2009). This server uses and combines 

several conformational and structural servers such as Psi-Pred (McGuffin et al., 

2000), SSPro (Pollastri et al., 2002) and JNet (Cole et al., 2008) with algorithms 

described by Bennett-Lovsey et al., 2008. Top hit matches, and those used in the 

literature, were then physically investigated for structural similarity and used 

for further analysis (Table 3.1). Two proteins were identified which were 

appropriate templates, Lactose Permease (LacY) Protein Data Bank (PDB) code: 

1PV6 and Glucose-3-phosphate transporter (GlpT), PDB code: 1PW4.  

3.2.2 Sequence alignment & analysis 

Although target-template servers provide 3D modelling structures, the models 

are commonly misaligned and exhibit poor structural properties. Primary 

sequences of OCTs and crystal structures listed in Table 3.1 were obtained from 

UniProtKB with the following accession numbers: hOCT1 (O15245), hOCT2 

(O15244), hOCT3 (O75751), 1PW4 (P08194), 1PV6 (P02920), 3O7P (P11551), 

3MKT (P18622), G2FP (Q2GFP1) and 2XUT (2XUT). Vector NTI Suite 8 

(Invitrogen) and ClustalW (EMBL-EBI) were used for sequence alignment and 

analysis.  Predicted TMDs were obtained using the TMHMM v2.0. server (Krogh 

et al., 2001). The sequences of respective TMDs and 10 residues flanking each 

end were aligned manually to ensure the model TMDs were aligned correctly 

with the TMDs of the crystal structures. Figure 3.1 demonstrates the alignments 

of template and OCTs. 
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Table 3.1. Available crystal structures which can be potentially used as OCT templates 

Protein PDB code Organism 
Number of 
TMDs 

Crystal 
resolution 
(Å) 

Sequence identity 
(similarity) with OCTs 

Reference 

Lactose Permease 1PV6 E.coli 12 3.5 13.7 (28.9) (Abramson et al., 2003) 

Glucose-3-phosphate transporter 1PW4 E.coli 12 3.3 14.4 (29.7) (Huang et al., 2003) 

Multidrug Transporter EmrD 2GFP E.coli 12 3.5 13.9 (31.4) (Yin et al., 2006) 

Multidrug and Toxin Extrusion 
transporter 

3MKT Vibrio cholerae 12 3.65 10.5 (24.8) (He et al., 2010) 

L-fucose-proton symporter 3O7P E.coli 12 3.2 13.1 (29.1) (Dang et al., 2010) 

Oligopeptide-proton symporters, 
PepT1  

2XUT 
Shewanella 
oneidensis  

12 3.62 13.1 (22.8) (Newstead et al., 2011) 

 The table displays membrane transporters which all have 12 TMDs. Interesting they all share common structural properties; TMDs 3, 6, 9 and 12 are all located within the 
plasma membrane and are not in contact with the binding cleft of the protein whereas the remaining TMDs, 1, 2, 4, 5, 7, 8, 10 and 11 all have a alpha-helices face 
orientated towards the substrate binding cleft. 
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3.2.3 3D-Structural Modelling  

This study used LacY and GlpT as templates for the OCTs. As LacY and GlpT do 

not contain a large extracellular loop unlike the OCTs, the extracellular loop was 

not aligned to the templates and thus not included in the model. Target-

template modelling of TMDs was subsequently performed using Modeller9v8 

(Fiser and Sali, 2003) using the aligned sequences as described in section 4.2.2. 

Fifty models were produced per OCT per template for reviewing and evaluating. 

During the analysis, a log file generated in each model is continuously scanned 

for errors allowing the process to be iterated until an acceptable model is 

obtained. Modeller produces an estimated objective function score for each 

model to give an indication of how well the particular model satisfies the 

restraints used to calculate it. However, this value does not necessarily indicate 

the quality of the model. The models are generated as PDB files and were 

viewed with PyMOL (Seeliger and de Groot, 2010) and Chimera (Pettersen et al., 

2004).  

3.2.4 Side-chain optimisation 

The orientation of the side-chains was optimised using SCWRL 4.0 (Bower et al., 

1997, Canutescu et al., 2003). SCWRL uses dead-end elimination algorithms to 

predict the structure of side chains on a given protein backbone structure. 

Optimising the dihedral angle of side chains minimises the energy function to a 

discrete set of rotamers of fixed length. The side chains with the most 

favourable energy status would be chosen and the side chains of the models are 

adjusted accordingly. 

 

Additionally Asn/Gln/His 180° flips were performed if needed with MolProbity 

(Chen et al., 2010b).  Mis-orientation of the end of Asn, Gln and His side-chains 

by 180° is common because the electron density is symmetric.  MolProbity can 

geometrically recognise and flip the residues into the correct state. 
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Figure 3.1. Amino acid sequence alignment of the predicted TMDs domains of OCTs 
with the TMDs of LacY permease.  
 Individual TMDs between the template and OCT were manually aligned to ensure TMDs were 
aligned correctly. Positions of TMDs are illustrated above and below the sequence alignment in red. 
Numbering of amino acids are in accordance with the LacY permease primary sequence. As LacY 
permease does not have a large extracellular loop the amino acids sequence encoding for this in 
OCTs were removed from the sequence alignment 

 

3.2.5 Model Validation 

3.2.5.1 Modeller 

Model accuracy was analysed using MODELLER, MolProbity, Ramachandran 

plots and PDBeFold SSM. Each structural model produced by Modeller 9v8 was 

assessed for accuracy and reliability using discrete optimised protein energy 

(DOPE) scores produced by Modeller 9v8. DOPE scores are the statistical 

potential based on the reference state corresponding to non-interacting atoms 
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to account for the spherical shape of the native structures. Figure 3.2 illustrates 

decision tree for computer modelling of transporters. 

 

3.2.5.2 Rampage 

Ramachandran plots were produced using the RAMPAGE server (Lovell et al., 

2003) which produced plots conforming to algorithms produced by 

Ramachandran et al., 1963. In brief, the plots assess backbone dihedral angles, 

ψ, against φ of amino acid residues within a protein structure and acknowledge 

any residues fall within an acceptable region on the plot. Glycine and proline are 

residues which are of most concern when producing structural models. As 

glycine only has a hydrogen atom as its side chain (rather than CH3, CH2 or CH 

groups which exist in other amino acid side chains), the residue is less sterically 

restricting. On the contrary, proline contains a distinctive cyclic structure in its 

side chain which ‘locks’ its φ backbone dihedral angle at approximately 75°, 

giving proline exceptional conformational rigidity within a proteins tertiary 

structure.  

 

3.2.5.3 MolProbity 

MolProbity is a specific structure-validation web server to provide atom contact 

analysis, steric problems, and dihedral-angle diagnostics in order to validate 

and improve the quality of the structures (Chen et al., 2010b).  

 

3.2.5.4 PDBeFold  

A comparative validation procedure between the template and the target was 

conducted using the PDBeFold SSM server (http://www.ebi.ac.uk/msd-

srv/ssm/) for structural similarity. The SSM server compares 3D structures of 

the target and the template from the PDB database and calculates Root Mean 

Square Deviation (RMSD) values calculated between Cα-atoms of matched 

amino acid residues at best 3D superposition of the target and template. 

Therefore RMSD simply gives an indication of the positional accuracy of a pair 

http://www.ebi.ac.uk/msd-srv/ssm/
http://www.ebi.ac.uk/msd-srv/ssm/
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of matched Cα-atoms. A large RMSD value indicates a low accuracy of the model 

(Krissinel and Henrick, 2004).    

 

Figure 3.2. Decision tree for structural computer modelling of OCT transporters 
Validation of models can be evaluated using a variety of different techniques and criteria. DOPE 
scores are often used but offer little insight into the true accuracy of a model. Ramachandran plots 
are a more accurate method to use, but we used manual methods to ensure the TMDs of OCTs were 
aligned correctly to the target-templates.  Additionally helical wheel plots were used to confirm 
TMDs were in the correct orientation. 
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3.2.6 Helical Wheel Analysis  

To assess if the TMDs important for substrate specificity are in the correct 

orientation and alignment, helical wheels plots for all TMDs were generated 

using the Helical Wheel Applet Projection (University of Virginia). Firstly TMDs 

were predicted using TMHMM Server V.2.0 (Sonnhammer et al., 1998). 

Predicted TMDs were then loaded into the Helical Wheel Applet available 

(http://cti.itc.virginia.edu/~cmg/Demo/wheel/wheelApp.html).  

Transmembrane domains are assumed to be take the conformation of standard 

α-helices (3.6 residues/helical turn) roughly corresponding to residues existing 

at an angle of 100o to their neighbouring residues. This allows a projection of 

the positions of the residues on a plane perpendicular to the α-helical axis. The 

plots then reveal whether hydrophobic residues are concentrated on one side of 

the helix with polar groups concentrated on the other. This arrangement is 

common with globular or transmembrane proteins where the hydrophobic face 

of the helix is orientated to the hydrophobic core or membrane and the 

hydrophilic face is orientated towards the solvent-exposed front or substrate 

binding cleft.  

3.2.7 Docking 

FlexX BioSolveIT LeadIT software (Gohlke et al., 2000) was used for docking 

experiments. FlexX is a computer program for predicting protein-ligand 

interactions. For a given protein and a ligand, FlexX predicts the geometry of the 

complex as well as an estimate for the strength of binding. Specific 

transmembrane regions located in the binding clefts were selected for docking 

of metformin. Ligand structures, including metformin and two OCT1 inhibitors; 

quinidine and cimetidine, were obtained from the PubChem website 

(http://pubchem.ncbi.nlm.nih.gov/). Ligands were flexible whilst the OCT 

models were modelled as a rigid structure. Appropriate residues were given 

charges relating to the protein existing in an environment with a pH of 7.35.  

Docking was performed using a 20 Å sphere located in the binding cleft of the 

model. Top hit docking results were used for binding affinity assessment. Ligand 

http://pubchem.ncbi.nlm.nih.gov/
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minimisation including changes to torsion angles, and orientation of hydrogens 

was permitted. Binding affinity was predicted considering hydrogen bonding 

interactions with hydrophobic and desolvation effects. The results provide 

three values for the protein-ligand complex; the estimated Ki of the ligand range 

(mM to nM), the calculated ∆G kJ/mol and ligand efficiency (∆G/number of 

heavy atoms). 

3.2.8 Impact of genetic variants on structure and docking 

The impact of TMD genetic variants, as described in chapter 2, on potential 3D 

structure and metformin docking were assessed. Firstly the amino acid residues 

of the genetic variants were visualised to determine if the functional R-group or 

side chain is orientated into the binding cleft. Secondly the same residues were 

determined if they were  within 10 Å of residues predicted to be involved with 

metformin docking as described in 4.2.7. Other previously known genetic 

variants proven to affect metformin transport in vitro were also included in the 

analysis (Leabman et al., 2002, Nies et al., 2011b) to determine if they were also 

located in binding cleft or within 10 Å of predictive metformin binding.  

3.2.9 Post Translational modification prediction 

Not all amino acid changing SNPs could be assessed as the structural models 

represented TMDs. Therefore we analysed if any nsSNPs were present on or 

near post translational sites. 

3.2.8.1 Glycosylation sites  

N-linked and O-linked glycosylation sites in OCTs were predicted using Centre 

for Biological Sequence analysis NetNGlyc 1.0 and NetOGlyc 4.0 Servers 

respectively (Steentoft et al., 2013).  

3.2.8.2 Ubiquitination prediction 

Ubiquitination sites were predicted using BDM-PUB, Prediction of 

ubiquitination sites with the Bayesian discriminant method. 

(http://bdmpub.biocuckoo.org/) A reduction in the number of ubiquitination 

sites may decrease the protein expression of OCTs. 

http://bdmpub.biocuckoo.org/
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3.3 Results 

3.3.1 Model Validation 

All DOPE scores were less than -1 indicating that 80% of the Cα atoms were 

within 3.5 Å of their correct positions. However, a more accurate method to 

assess a model is using Ramachandran plots to assess if the residues backbone 

dihedral angles, ψ, against φ of amino acid residues within the model are 

acceptable. Figure 3.3 and 3.4 gives the Ramachandran assessments. The OCT1 

model conformed to Ramachandran plot with 99.2% of the residues in the 

favoured and allowed regions of the Ramachandran plots according to 

RAMPAGE analysis. Of the total 398 residues built into the model, only 3 

residues occupied phi/psi backbone torsion angles in disallowed regions; 

however, upon further analysis, these residues are located in loop regions not 

involved with TMDs or substrate binding cleft. Additionally 8 residues were in 

allowed regions and were all located in loop regions, with the exception of one 

S340 residue located in TMD11. The OCT2 model only had 2 residues in the 

outlier regions, but these residues were in intracellular loops. Table 3.4 gives 

summary results of the OCTs with the two templates used. LacY and GlpT 

sequence identity and similarity between these two templates and OCTs are 

>13% and >27% respectively. LacY was chosen as the best template for both 

OCTs and was subsequently used for further analysis.  

Some residues exhibit ambiguous orientations of side-chain amides, namely, 

Asn, Gln and His residues. Some of these orientations overlap with other 

residues in close proximity. MolProbity recommended flips for Asn, Gln, and His 

sidechains as part of its default run of adding hydrogens. This was performed in 

both models.  This reduced the average number of bad backbone bonds from 

>0.73% to >0.38% in both transporters.  The PDBeFold SSM server-produced 

RMSD values between the OCT1 and OCT2 models and the 1PV6 crystal 

structure was only 0.84Å and 3.51Å. This suggests the OCT1 model is a better 

constructed model than OCT2, but overall the validation results indicate the 

models are reasonably well constructed and acceptable. 



Chapter 3 

97 

 

Figure 3.3. Ramanchandran assessment of final OCT1 model 

 

Each peptide backbone dihedral angles, ψ and φ within the models are plotted against each other and acknowledge any residues fall within a acceptable region on the plot. 
Overall 387 (97.2%) residues were in the favoured region, 8 (3.0%) were in the acceptable region and 3 (0.8%) were in the outlier region. Expected and desirable results are 
98% residues within the favoured region with 2% within the acceptable region. 

OCT1 
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 Figure 3.4. Ramanchandran assessment of final OCT2 model 

 

Overall 387 (96.3%) residues were in the favoured region, 13 (3.3%) were in the acceptable region and 2 (0.5%) were in the outlier region. Expected and desirable results 
are 98% residues within the favoured region with 2% within the acceptable region. 

OCT
2 
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3.3.2 3D-Structural Analysis 

Figure 3.5 illustrates a model of OCT using LacY as a template. The two different 

stereoviews show how the binding cleft is in an inward facing orientation 

towards the cytoplasm. The binding cleft measures >25.3 Å wide and a depth of 

>36.4 Å. Figure 3.5c shows the distribution of TMDs within the plasma 

membrane. TMDs 1, 2, 4, 5, 7, 8, 10 and 11 are all predicted to contribute to the 

binding cleft suggesting they are involved with substrate recognition and 

specificity. Conversely TMDs 3, 6, 9 and 12 are located within the plasma 

membrane suggesting they are not involved with substrate binding.  

 

3.3.3 Helical Wheel Analysis  

The wheel plots showed that the majority of TMDs 1,2,4,5,7,8,10 in both 

transporters exhibited specific hydrophobic and hydrophilic faces. To ensure 

the helical wheel plots correlated with the TMDs of the models, each TMD was 

assessed to evaluate whether the hydrophilic faces of the model were facing the 

binding cleft. Structural models correlated with the helical wheel analysis 

suggesting that they were correctly aligned with respect to the crystal 

structures. Unfortunately the models produced by the GlpT template appeared 

to have the TMDs incorrectly aligned in respect to the helical wheel plots. All 

helical wheel plots for OCT1 and OCT2 transporters are shown in appendix 

Figure A-3.1 and A-3.2 respectively. 

 

3.3.4 Docking 

Models produced from the LacY template were used in further docking 

experiments. This was due to the TMDs being correctly aligned and predicted to 

be in the correct orientation. In total >400 docking results were produced for 

each model and ranked accordingly. The first 10 top hit docking results were 

then used for further study investigating predicted binding affinities. The top hit 
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docking results for OCTs are displayed in Figure 3.7. Although this figure 

displays the top hit for OCTs, there was a degree of overlap for residues 

involved in metformin binding for OCT1 and OCT2. For example conserved 

residues Asp(378/381;OCT1/OCT2) and Tyr(381/384) located on TMD 8 were 

predicted to bind to metformin in other top docking results. Metformin 

exhibited a binding affinity (∆G) of -14  and -16 kJ/mol for OCT1 and OCT2 

respectively. 

 Figure 3.5. Predictive structural model of hOCT1 
 (A) This image displays the LacY permease transporter template (pink) overlapping the hOCT1 
model in rainbow colours with each colour  represneting a TMD. (B) hOCT1 model, each colour 
represents a single TMD. This view is orientated to display hOCT1 on the X-axis to the plasma 
membrane showing the binding cleft facing the intracellular compartment. Numbers correspond 
to TMD number. (C) This view is orientated to display the binding region of hOCT1.  TMDs are 
numbered accordingly. The transporter binding cleft measures at 25.3 Å wide by 36.4 Å depth. 
Note that TMDs 3, 6, 9 and 12 are predicted not to contribute to the binding pocket. 
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There was a degree of overlap for the OCT1 inhibitors with Asp156, Gln362 and 

Trp354 being involved in docking of both quinidine and cimetidine. The top 

quinidine docking result also shared the same residues involved in metformin 

binding (Tyr361, Asn156, Trp354 and Phe355). The predicted binding affinity 

for quinidine and cimetidine was greater than metformin with ∆G of -25 and -19 

kJ/mol, respectively.  

 

 

Figure 3.6. Top hit docking results of ligands with OCT1 & 2  
 (A) OCT1. Polar and charged groups contribute to metformin binding to OCT1 binding cleft. The 
hydrophobic residues are shown in green interacting with two CH3 groups on metformin. (B) OCT2. 
Four residues are contributing to metformin binding. All residues shown to interact with metformin 
binding were all within 4 Å of metformin. All docking results showed that polar or charged residues 
would dock to metformin contributing to the binding affinity. (C) OCT1 – quinidine. (D) OCT1 – 
cimetidine. Both OCT inhibitors and metformin shared specific amino acids contributing to binding. 

3.3.5 Impact of genetic variants on structure and docking 

Amino acid altering genetic variants were assessed to see if they were located 

near the predicted metformin docking sites or orientated into the binding cleft. 

(A) OCT1 - metformin (B) OCT2 - metformin 

(C) OCT1 - quinidine (D) OCT1 - cimetidine 
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Three variants in OCT1 were orientated into the binding cleft, L160, M440 and 

G465R, Figure 3.7 shows the structural effect of G465R has on the binding cleft. 

However, L160 residue in OCT1 was the only amino acid within 10 Å of the area 

predicted to contribute to metformin binding. Only the M165 residue in OCT2 

was orientated into the binding cleft and within 10 Å of residues invloved in 

metformin binding. Table 3.2 summarises the results.  

Table 3.2. Common amino acid variants in OCT 1 and 2. 

 
Residue 

Effect on 
metformin 
transport 

TMD 
Residue 

orientated into 
binding cleft? 

Residue within 10Å of 
residues involved in 

binding? 

SL
C

2
2

A
1

 

(O
C

T
1

) 

L160F Similar 2 Y Y 

S189L Decreased 3 N N 

G220V Decreased 4 N N 

G401S Decreased 9 N N 

M408V Decreased 9 N N 

A413V - 9 N N 

M420del Decreased 9 N N 

M440I Similar 10 Y N 

G465R Decreased 11 Y N 

SL
C

2
2

A
2

 

(O
C

T
2

) 

M165I Decreased 2 Y Y 

M194V - 3 N N 

A270S Decreased 6 N N 

K432Q Increased 10 N N 

All variants listed in the table are located in TMDs and the majority have been expressed in vitro to 
assess the impact they have on metformin transport. The table therefore provides a comparison to 
residues indentified to potentially interact with metformin binding with results obtained in vitro. 
Polymorphic residues were identified to evaluate whether they are involved in the binding cleft or 
are in close proximity of residues predicted to bind to metformin. Y, yes; N, no. In vitro metformin 
transport results used to generate this table were acquired from (Leabman et al., 2002, Nies et al., 
2011b). 
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Figure 3.7.  G465R variant in OCT1 
The major allele Gly465 exhibits no bulky side chain within the substrate binding cleft, left. The 
minor allele variant Arg465 (right) has its bulky side chain orientated within the substrate binding 
cleft which would suggest could directly impact substrate binding.  

3.3.6 Post Translational modification prediction 

3.3.6.1 Glycosylation sites  

Four potential N and O-linked glycosylation sites were predicted within OCT1 

on residues N72, N112, S52 and S108. These were not located near the 

identified R61C genetic variant. Three potential N-linked glycosylation sites 

were predicted within OCT2 on residues N72, N97 and N113. These were not 

located near any nsSNPs in OCT2. No O-linked sites were identified in OCT2.  

3.3.6.2 Ubiquitination prediction 

The BDM-PUB server showed OCT1 had 11 potential ubiquitination sites on 

lysine residues. Residue 19 in first intracellular loop, residues 308, 311, 318, 

345 in second loop and residues 517, 526, 534, 536, 538, 545 in the third loop.  

For OCT2 the BDM-PUB server revealed 9 potential ubiquitination sites with 

residues 304, 308, 309, 312, 329 in second loop and residues 518,537,539,541 

in the third loop. All ubiquitination sites were located in cytoplasmic loops. The 

two SNPs in OCT1 and two SNPs in OCT2 were not located on or near (within 10 

residues) any predicted ubiquitination sites. 

Arg465 - Variant Gly465 – Wild Type 
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3.4 Discussion  

Predicted 3D-structure models have been routinely and successfully used to 

screen large databases and identify possible transporter ligands through 

docking experiments and for enabling rational drug design. The 3D-structures 

of these transporters can be used for homology and comparative predictive 

modelling for other transporters that share sequence similarity and 

transmembrane domains. Ultimately they provide an illustrative mechanistic 

insight to the binding of ligands and possible transport mechanisms. 

 

There are several online automatic structure prediction servers which can 

produce structural models through only inputting the amino acid primary 

sequence of the target protein including I-TASSER, SWISS-MODEL and Phyre2 

which have been used to predict the structure of transporter proteins in 

publications (Giannoudis et al., 2013, Dickens et al., 2013). However initial 

analysis using the web based servers produced models which failed the 

validation procedures used in this chapter and were thus not biologically 

accurate models. A more stringent method in producing structural models is 

using programs such as MODELLER as implemented in this chapter. This 

method produced models that passed the rigorous validation procedures 

undertaken in this study. For example, the RMSD between LacY and OCT1 was 

0.84Å. Considering the RMSD value for proteins with 50% sequence identity is 

expected to 1 Å, a value of <0.84 Å is a highly acceptable given the OCT proteins 

share <15.25% sequence similarity with LacY. The RMSD value for the OCT2 

model was 3.51 Å; although higher, given the low sequence homology, this is 

still regarded as an acceptable value. 

 

Interesting all crystal structures identified as possible templates for OCTs 

(Table 3.1) share common structural features. Each protein has 12 TMDs which 

form a barrel containing a substrate binding core. More specifically TMDs 3, 6, 9 

and 12 do not contribute to the substrate binding core of the transporters but in 
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fact are located in the peripheries of the protein, embedded within the plasma 

membrane. Although there is low sequence similarity between the template and 

OCTs the structural features, number of TMDs, alpha-helices etc, are more 

important to base a predictive structure than absolute sequence percentage 

similarity. Conversely the sequence similarity between Lac Y permease and OCT 

is regarded as more than acceptable to model a predictive structure based on 

the crystal. The helical wheel plots revealed that these TMDs are mainly 

composed of hydrophobic residues and do not possess a hydrophilic face. 

Therefore helical wheel plots were produced from the predicted TMDs of the 

OCTs to see if this correlated with known crystal structures. With regards to the 

OCTs specificity for organic cations, one would expect a high number of polar 

hydrophilic amino residues in TMDs, particularly orientated towards the 

substrate binding cleft with the hydrophobic residues facing and buried within 

the plasma membrane. Further analysis revealed that all 3, 6, 9 and 12 TMDs 

from OCT1 and 2 are >78% composed of hydrophobic residues suggesting these 

TMDs are not directly involved in the binding cleft and most probably 

embedded in the plasma membrane. Conversely, TMDs 1, 2, 4, 5, 7, 8, 10 and 11 

all contained a hydrophilic face suggesting these TMDs contribute to a binding 

cleft core. 

 

Two templates were initially used in this study for predictive OCT modelling. 

LacY and GlpT templates successfully produced acceptable models in 

accordance with Ramachandran plots. These transporters share >15.4% 

sequence identity, >29.6% sequence similarity and display similar structures 

containing 12 TMDs forming large clefts orientated towards the cytosol. Further 

analysis was implemented to determine if the TMDs of OCTs were correctly 

orientated by studying if hydrophilic residues orientated and exposed towards 

the binding cleft. This revealed that models using the GlpT template exhibited 

TMDs that were not all correctly orientated, unlike the LacY template. Therefore 

the best scoring OCT model using the LacY template was chosen for subsequent 

docking analysis.  
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Predicted metformin docking experiments were restricted to the binding cleft of 

the OCT models, rather than the entire protein including helices embedded in 

the plasma membrane. Over 400 hits per model were produced and ranked 

accordingly; top scoring hits were used for binding affinity predictions. The 

majority of docking hits predicted that aspartic acid residues were important in 

the binding of metformin. Additionally polar residues such as serine, asparigine 

and tyrosine residues were identified as important contributors to metformin 

binding. This finding conforms to metformin’s polar properties exerted through 

its guanide, amide rich backbone. Conversely, some hydrophobic residues were 

found to interact with the two CH3 groups of metformin. 

 

Top binding affinities of metformin ranged from -11 to -16 kJ/mol. In respect to 

the size of the metformin molecule, this affinity is considered to be rather 

strong. Computational docking experiments often use the phrase ‘ligand 

efficiency (LE)’ which refers to the size of the molecule and number of atoms 

with the overall affinity of the ligand binding to the protein. Metformin’s LE was 

calculated to be -1.78 kJ/atom and also revealed the positively charged amide 

group contributed to a large fraction of the binding affinity. This information 

provides a useful insight when designing compounds for known protein target 

structures. For example Huttunen et al., 2009 designed prodrugs based on 

metformin's structure in order to improve bioavailability. This was achieved by 

removing or shielding the positive charged tail end of metformin. Though this 

may increase metformin’s bioavailability, the results discovered in this chapter 

suggest this may produce a compound with decreased OCT transport affinity 

and thus potentially decrease its pharmacological action.  

 

Polymorphic residues in OCTs, as identified in Chapter 2, were used in docking 

experiments to assess their impact on metformin binding or affinity (Table 3.2). 

Firstly, residues were visually examined if they were orientated towards the 

binding cleft. This could indicate that they are directly involved in substrate 

recognition for specific substrates, and thus variants could influence transport 
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activity. Additionally polymorphic residues were identified if they were within 

close contact (10Å) of residues predicted to be involved in metformin binding.  

The L160 residue was the only amino acid in OCT1 within 10 Å of the area 

predicted to contribute to metformin binding. In vitro studies have similar 

transport activity between both L160F variants (Nies et al., 2009).  This may be 

due to both residues having hydrophobic properties. Additionally this variant 

was shown in Chapter 2 (Table 2.4) through the algorithms to not exert a 

negative impact on protein function. Adjacently, the M165 residue in OCT2 was 

both orientated into the binding cleft and within 10 Å of residues invloved in 

metformin binding. These results support that of Leabman et al., 2009 who 

observed reduced metformin transport in the variant, I165, in comparison to 

the M165 residue. This shows our predictive results reflect the results of 

Leabman’s et al., 2009 in vitro study. We observed the G465R variant to be 

orientated into the binding cleft (Figure 3.7), which has been shown to decrease 

metformin transport in vitro. Although this residue was not located near our 

predicted metformin binding site, it is clear that it structurally impacts the 

substrate binding cleft. Glycine is a small residue in comparison to the long, 

charged chain of arginine and thus may interfere with the conformational 

structure of OCT1.  

In summary, we found discrepancies between our in silico predictive system to 

that observed in vitro.   

 

We included two known OCT1 inhibitors for docking; quinidine and cimetidine 

(Tu et al., 2013, Lee et al., 2009b).  Interestingly the residues involved in binding 

these not only overlapped with each other but also with those involved with 

metformin binding. Predictively, the inhibitors exhibited a higher binding 

affinity than the substrate, metformin. This may provide the exact binding 

pocket these inhibitors bind and provide a mechanistic relationship into how 

they specifically inhibit metformin.  
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What the structural models fail to account for is amino acid variants affecting 

the conformation of the protein. Although some residues were predicted to have 

an impact on metformin transport they could play an important role in the 

conformational stability of the transporter and thus significantly impact 

transport activity. Additionally the 3D-models are only produced with an 

inward facing binding cleft and thus may explain efflux of substrates whereas 

the in vitro transport results relate to metformin influx. Crystal structures of 

templates including the binding cleft orientated towards the extracellular 

matrix would prove highly beneficial for understanding the complete transport 

mechanisms of a particular transporter.  

 

There are numerous limitations to predictive computational modelling. The 

crystal structures used in this study as a target-template for OCT structures 

were in one, inward (cytoplasmic) facing orientation only. This only provides 

possible mechanisms to substrates binding in the cytoplasmic facing binding 

cleft and substrate efflux. The OCTs are regarded as bi-directional facilitated 

transporters which may give equilibrative concentrations across the membrane. 

Furthermore, transporters exist in different structural states under different 

environment conditions, such as pH. This is particularly important when 

assessing transporters expressed in the intestinal epithelium where the 

environmental pH can vary dramatically and thus may contribute to different 

protein conformations. PMAT is an intestinal metformin transporter which is 

sensitive to pH changes. Zhou and Wang, 2006, discovered metformin transport 

through PMAT decreased under acidic conditions. 

 

Unfortunately, low sequence identity between available crystal structures and 

the large extracellular loops of OCTs resulted in the loop being excluded from 

predictive models. OCTs contain a large extracellular loop between residues 43 

and 149. Therefore we analysed potential N and O-linked glycosylation sites 

using online servers and examined whether they were near any variants. The 

results showed no variants were near any predicted glycosylation sites. These 
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sites could be involved in substrate recognition or protein stability and 

therefore could be important in its function. For example the OCT1 amino acid 

variant R61C located in the large extracellular loop has been shown to 

significantly reduce metformin transport in vitro (Nies et al., 2011b). 

 

Similarly intracellular loops of the OCTs were not incorporated into the 

structural models. Therefore we used an ubiquitination prediction server on 

OCTs to determine if any variants were expressed near any ubiquitination sites. 

The results concluded no variants were located near any sites. Other studies 

have identified several residues that are predicted to be involved in PKC binding 

and decreased transport activity when mutated (Biermann et al., 2006). 

Nevertheless, these were not located near any variants identified in chapter 2. 

 

Using docking software to investigate the potential of two substrates binding 

simultaneously would provide useful information when investigating the effects 

of an inhibitor or multiple substrate transport mechanisms. Due to the large 

binding cleft in OCTs, it has been previously hypothesised that these may be 

able to transport more than one small molecule under, a single transport 

mechanism (Higashi et al., 2014).  Traditionally, studies investigating the effects 

of substrates or inhibitors on transporters will use a general high-throughput in 

vitro assay to generate a bank of known ligands and inhibitors with 

corresponding activity values (Km and Vmax). Computer models can then offer an 

insight into the mechanisms, of these substrates and ligands undergo in vivo, 

supporting laboratory findings. This chapter has taken a backward approach 

using 3D-strutural computer models as an starting point. However this 

approach could offer a rationale for deciding which particular amino acids for 

further investigation using laboratory techniques. 

 

Other members of the MFS family that are known to transport metformin in 

vitro include OCT3, MATE1, MATE2K and PMAT (Zhou et al., 2007a, Chen et al., 

2013). Therefore it would also be beneficial for this chapter to construct 
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structural models for these proteins. However, unlike OCTs, MATE1 and 

MATE2K are predicted to have 13 TMDs and PMAT to have 11 TMDs. Therefore 

using a template containing 12 TMDs would produce inaccurate results. Crystal 

structures of membrane proteins containing 13 or 11 TMDs would need to be 

used as templates. Conversely helical wheel plots could predict whether TMDs 

are involved with substrate binding in the binding cleft or interact with the 

plasma membrane. Individual TMDs could then be modelled on standard α-

helices and applied to docking experiments using a bank of compounds. 

However, as discovered in this report, several TMDs in close contact all play a 

synergistic role in the binding of metformin.  

 

Although predictive structural modelling may not overtake classical ligand-

based ‘wet’ laboratory techniques to assess possible ligand specificity for 

transporters they provide a visual aid to possible structure mechanistic 

understanding of transporter mechanisms which are not fully elucidated today. 

The chapter has used these techniques to provide an illustrative understanding 

to how some genetic variants may impact substrate transport.
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4.1 Introduction 

A wide variety of HPLC methods have been developed for the quantification of 

metformin in biological fluids. They vary considerably in the choice of HPLC 

columns, detection methods, internal standards and extraction procedures, as 

demonstrated in Table 4.1, thus generating enormous differences in sensitivity, 

retention time and reproducibility. The choice of stationary phase for the 

optimum retention of a compound is known to be important and should be 

based on its physicochemical properties. Compounds with positive or high LogP 

values are predicted to be retained on a hydrophobic column (reversed-phase 

chromatography). Conversely compounds with a negative or low LogP value, 

such as metformin, are predicted to be retained on a hydrophilic column (HILIC 

or normal-phase chromatography). Despite this, the majority of published 

studies have used reversed-phase chromatography (Porta et al., 2008, Chen et 

al., 2004, Wang et al., 2004, AbuRuz et al., 2003).  

Metformin has two acid dissociation constants (pKa) of 2.8 and 11.5 and a 

partition coefficient logP of -2.64.  Consequently, under physiological conditions, 

metformin exists as a single protonated, highly polar cation and is 0.01% 

unionized in blood (Brittain, 1998, Craig, 1990).  These properties collectively 

contribute to the poor bioavailability (40-50%) of metformin in comparison to 

other anti-T2DM drugs such as pioglitazone (pKa, 6.8 and 6.1; logP, 2.4) and 

glibenclamide (pKa, 5.3; logP, 4.79), which exert high bioavailability of 99% and 

80%, respectively (Malinowski and Bolesta, 2000, Campbell et al., 1991). Given 

its poor bioavailability, metformin is not likely to be absorbed passively from 

the GI tract. Metformin does not bind to plasma proteins (Scheen, 1996) making 

extraction from biofluids relatively straightforward.  

Our initial studies showed the high polarity of metformin resulted in poor 

retention times when using reversed-phase chromatography despite using low 

organic content in the mobile phases. What is not apparent or stated in previous 

studies is the quality of the reverse phase columns used for separation of  
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Table 4.1. Reported HPLC methods for the determination of metformin  

Column Mobile phase  Flow 
(m/min) 

Detection Internal Standard Retention 
(min) 

Extraction Volume 
injected 
(µl) 
plasma 
volume 
% 

pH Recovery 
(%) 

LLOQ 

(ng/m) 

Linearity 
(ng/ml) 

Reference 

C18 MeCN, MeOH, 10 
mM ammonium 
acetate (20:20:60, 
v/v/v) 

0.65 MS Phenformin 1.2 OSPP 20 (-) 7.0 - 1 1-2000 (Wang et al., 
2004) 

C8 MeCN, water, 
formic acid 
(70:30:1, v/v/v) 

0.5 MS DiPhenhydramine 2.63 OSPP 20 (-) - >96.5 2 2-2000 (Chen et al., 
2004) 

C18 Ion 
pair 

2mM sodium 
dodecyl sulphate 
in MeCN, 20 mM 
KH2PO4 

(37.5:62.5, v/v) 

- UV  Phenformin  4.85 IPSPE  150 
(0%)* 

7.3 98 5  5 – 1500  (AbuRuz et al., 
2003) 

Silica MeCN, 30 mM 
(NH4)2HPO4 

(25:75, v/v) 

1.0 UV  Atenolol 6.8 OSPP - 7 >76 10 10-2000 (Cheng and 
Chou, 2001) 

Silica MeCN, 40 mM 
NaH2PO4 (25:75, 
v/v) 

1.0 UV  Ranitidine 5.7 OSPP 50 
(20%) 

6 >97.5 15.6 15.6-
2000 

(Amini et al., 
2005) 

HILIC Water, MeCN, 
formic acid 
(30:70:0.1, v/v/v)  

0.65 MS metformin-D6 0.99 OSPP 1 (20%)  81 0.5  0.5–500  (Liu and 
Coleman, 2009) 
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Table 4.1. (continued) Reported HPLC methods for the determination of metformin  
Column Mobile phase  Flow 

(ml/min) 
Detection Internal Standard Retention 

(min) 
Extraction Volume 

injected 
(µl) 
plasma 
volume 
% 

pH Recovery 
(%) 

LLOQ 

(ng/ml) 

Linearity 
(ng/ml) 

Reference 

HILIC 10 mM 
ammonium 
acetate, MeCN 
(40:60, v/v) 

1.0 UV  Tetramethyl 
guanidine 

9.5 OSPP - 5 92 1000 1000-
10000 

(Huttunen et al., 
2009) 

Cation 
exchange 

5mM KH2PO4,   
MeCN (76:24, 
v/v) 

1.0 UV  Buformin 9.5 OSPP 50 
(30%) 

5.3 99.4 20 20–4000  (Bonfigli et al., 
1999) 

Cation 
exchange 

400 mM 
ammonium 
acetate 

2.0 UV  - 5 UF 98.5 (-) - 98 50 100-
4000 

(Vesterqvist et 
al., 1998) 

Meta  

Sil-Phenyl  

20 mM KH2PO4, 

MeCN (50:50, 
v/v) 

1.0 UV  Propranolol 7.5 OSPP 25 
(20%) 

7.0 93.7 30 30-4000 (Porta et al., 
2008) 

Ciano 10 mM KH2PO4, 

MeCN (60:40, 
v/v) 

1.0 UV  - 5.9 APP  50 (96) 3.5 97 60 62.5-
4000 

(Yuen and Peh, 
1998) 

0% plasma volume -solid phase extraction. IPSPE, ion pair solid phase extraction; OSPP, organic solvent protein precipitation (liquid-liquid); UF, ultrafiltration; UV, Ultra-
violet. 
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metformin from biological fluids. It is appreciated that prolonged use of reverse 

phase columns can result in the loss of C18 groups from the columns polymer, 

exposing a bare silica surface, transforming the stationary phase from 

hydrophobic to hydrophilic. This could provide a mechanistic explanation to the 

retention times exhibited when using reverse phase columns. This theory 

supports the finding by Van de Merbel et al., 1998 who experienced greater 

retention of metformin using old C18 columns over new C18 columns. 

The most common extraction method for metformin is liquid-liquid plasma 

protein precipitation using organic solvents (Porta et al., 2008, Wang et al., 

2004, Zarghi et al., 2003, Marques et al., 2007). This simple, rapid technique 

exhibits high recovery but sacrifices sensitivity through sample dilution. 

Moreover, it does not remove endogenous compounds in plasma such as lipids 

which can interfere with the mass spectrometer instrumentation. Other 

alternatives such as ion-pair solid-phase (AbuRuz et al., 2003) and 

ultrafiltration (Vesterqvist et al., 1998) have been utilised to yield pure extracts; 

however, they are time consuming methods which also have poor sensitivity. 

In order to overcome the deficiencies of currently available assays which have 

not been applied to T2DM clinical samples with high lipid levels, the 

development of a simple, sensitive and reproducible HPLC method for the 

quantification of metformin which is transferable with both ultra violet (UV) 

and mass spectrometric detection is described. This method was validated using 

an easy to follow work-flow diagram and subsequently applied to the 

measurement of plasma concentrations of metformin in T2DM patients. The 

effects of common comedications associated with this patient group were also 

investigated to elucidate whether these drugs may influence the quantification 

of metformin ex vivo.  

 

 

 

 



Chapter 4 

118 

 

4.2 Materials & Methods 

4.2.1 Chemicals and reagents 

All chemicals used in this study were purchased from Sigma-Aldrich (Poole, 

UK). Water was purified using a Milli-Q Gradient system. 

4.2.2 Preparation of standards and QC samples 

All concentrations of metformin and phenformin refer to their hydrochloric 

salts. Stock solutions of metformin (1 mg/mL) and internal standard (IS) 

phenformin (1 mg/mL) were prepared by dissolving the hydrochloride salts in 

mobile phase A which comprised acetonitrile, 5 mM ammonium acetate, formic 

acid (90:10:0.1, v/v/v;  pH 5.1). A series of metformin standard solutions at 

different concentrations (0.3-10,000 ng/mL) were prepared through serial 

dilutions of the stock concentration with mobile phase A. A working solution of 

phenformin (1 µg/mL) was also prepared. High, medium and low and LLOQ QC 

concentrations of 300, 30, 3 and 0.3 ng/mL, respectively, were chosen and 

prepared. Metformin concentrations are quoted as their salt (metformin·HCl), 

free base concentrations were calculated by dividing the salt concentration by 

1.28. All working solutions were stored at +4oC and used within 24 hours of 

preparation.  

4.2.3 Extraction procedure 

To 50 µl of plasma, 2.5 µl of the IS (10 µg/mL) and metformin (appropriate 

concentrations) working solutions were added and vortexed for 5 sec. Mobile  

phase A (447.5 µl) was added, vortexed and left for 15 min at room temperature 

to ensure complete protein precipitation had occurred. The solution was then 

centrifuged at 14000 rpm (17,500×g) for 10 min at room temperature. The 

supernatant was transferred to a clean container and centrifuged again under 

the same conditions to minimise precipitate being transferred prior to analysis 

by LC-MS/MS. 
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4.2.4 Chromatography 

Chromatography was performed using a Phenomenex Luna HILIC column (250 

mm x 4.6 mm, i.d. 5µ) connected to a HILIC guard cartridge (4 mm x 3 mm). A 

gradient mobile phase was used consisting of gradient mobile phase A (see 

section 4.2.2) and mobile phase B (5mM ammonium acetate, formic acid 

(100:0.1, v/v) pH 5.1). Mobile phase A was held at 80% for 2 min, then 50% for 

5 min, then returned at 80% for 5 min equilibration. A 10µL sample was used 

for detection. A solution of mobile phase A was used for needle and valve wash 

to minimise carry-over in the autosampler. The total run time was 12.0 min. The 

flow rate was maintained at 0.6 mL/min. The autosampler temperature was set 

to 4oC and the column remained at room temperature (23oC). To establish 

possible matrix effects ionisation effects we used post plasma precipitation 

extracts from blank plasma samples and monitored any differences in electron 

spray ionisation responses for both metformin and the IS through a post-

column infusion. The results revealed that both retention times and response 

appeared satisfactory.  

 

4.2.4.1 UV detection 

HPLC-UV detection was performed using a Dionex P580 pump online with the 

ASI-100 autosampler and UVD340U detector. Detection of metformin was 

analysed at 235 nm. Chromatograms were analysed using Chromeleon® 

software v.6.8. 

4.2.4.2 MS/MS detection 

Detection was performed on an API 3000 LC-MS/MS (Applied Biosystems). The 

operating conditions were: ionisation, positive mode; source temperature, 

450oC; ion spray, 5000v; Nitrogen gas (99.999%) at 3, 10 and 14 psi as the 

collision gas, curtain gas and nebuliser gas, respectively. Optimised parameters 

for metformin and phenformin were: entrance potential (EP), 10v; declustering 

potential (DP), 31 and 36v; focusing potential (FP), 130v; collision energy (CE), 

27 and 29v; collision cell exit potential (CXP), 12 and 10v, respectively. Analytes 
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were detected using multiple reaction monitoring (MRM) with transitions of 

m/z for metformin and phenformin monitored at 130.14→70.9 and 

206.15→59.9, respectively (Appendix 2.7.1) with a dwell time of 200 ms per 

transition. Data acquisition was performed with AnalystTM (v.4.2) on a MS 

workstation. 

 

4.2.5 Method validation 

This method has followed the validation procedures and acceptance criteria laid 

down in the Guidance for Bioanalytical Method Validation for Human Studies set 

by the Food and Drug Administration, (FDA, 2001) and Guideline on Validation 

of Bioanalytical methods set by the European Medicines Agency (EMEA, 2010). 

However, the guidelines differed in which procedures should be carried out 

sequentially, and therefore a summary of the sequential validation steps has 

been summarised in Figure 4.1.  

 

4.2.5.1 Limit of quantification 

Lower limit of quantification (LLOQ) was defined as the lowest concentration 

peak response with at least 5 times the response as compared to a blank sample 

with a precision and accuracy of ≤20% and ±≥20% respectively. This was 

evaluated by spiking plasma (n=6) with metformin before extraction and 

determined on two different days (inter-day assay). 

 

4.2.5.2 Limit of detection 

Limit of detection (LOD) was defined as the lowest concentration of metformin 

with a signal-to-noise ratio ≥3. This was evaluated by spiking plasma (n=6) with 

metformin before extraction and determined on three different days (inter-day 

assay). 
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Figure 4.1. Work flow diagram for  method validation. 
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A systematic flow diagram for undertaking sequential validation steps with acceptable 

criteria based on guidelines and recommendations from the FDA. Reference range was 

chosen based on previous reports in the literature. AP&A; Acceptable precision & 

accuracy, defined a CV<20% and ±20%. QC samples are accordingly; low 2-3 times the 

LLOQ; medium, middle of the range; high, 80-85% of the ULOQ. After the QC sample 

concentrations have been established, subsequent validation analyses may be 

performed. 

 

4.2.5.3 Selectivity 

Selectivity was defined as the ability of a method to differentiate and quantify 

the analyte in the presence of other components in the sample. Analyses of 

blank plasma samples obtained from 6 individuals (3 male, 3 female) were 

examined to determine if interfering peaks were present at the retention time of 

metformin and the internal standard, phenformin. Acceptable criteria state that 

a peak present at the retention time of the analyte and internal standard peak 

area should be ≤20% and <3% at the LLOQ, respectively. 

 

4.2.5.4 Standard curve and linearity  

A stock solution was prepared by spiking metformin into human plasma. 

Calibration standards were then produced by diluting the stock with blank 

human plasma to give 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000 and 10000 

ng/mL of metformin. A calibration curve was constructed by plotting peak area 

ratio of metformin to IS (y) versus metformin concentrations (x). Slope, 

intercept and correlation coefficients were calculated as regression parameters. 

Linearity between concentrations were defined as having a correlation 

coefficient of >0.989 with coefficient of variation (CV) ≤15% for all 

concentrations with the exception of that related to the LLOQ for which ≤20% 

was acceptable. 



Chapter 4 

123 

 

4.2.5.5 Recovery 

Recovery of metformin was determined through comparison of peak areas from 

spiked human plasma before and after the extraction procedure using the high, 

middle, low QC and LLOQ (300, 30, 3, 0.3 ng/mL) concentrations (n=3) on one 

day. Recovery was recorded as absolute and relative recovery. Absolute 

recovery was defined as the peak area of metformin in extracted plasma with 

reference to the peak area of metformin in mobile phase A (different matrix). 

The relative recovery was defined as the peak areas of metformin in extracted 

plasma with reference to the peak area of metformin in spiked extracted 

plasma. 

 

4.2.5.6 Precision and accuracy 

Assay precision and accuracy was evaluated both intra- and inter-day by 

determining the four QC samples as described above. Precision was defined by 

coefficient of variation (CV), and accuracy was defined as bias. A precision of 

≤15% for all concentrations analysed with exception of that related to the LLOQ 

(≤20%) were acceptable with a mean accuracy between 85-115% for all 

concentrations with the exception of  the LLOQ (80-120%), as recommended by 

the FDA (2001).  

 

4.2.5.7 Stability 

Stability was assessed in QC samples under various conditions reflecting storage 

processes encountered in this experimental study. Stability parameters 

assessed were short term (24 hours), long term (7 days) post preparative 

storage and following three freeze-thaw cycles at -80°C. Samples were thawed 

at room temperature and when appropriate, refrozen for at least 24 hours. 

Solutions were stored in polypropylene cryovials to minimise evaporation. The 

acceptance criteria state that samples should have a precision of ≤15% for all 

concentrations analysed with exception of that related to the LLOQ (≤20%). 
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4.2.6 Application to clinical samples 

Plasma samples were collected from 75 T2DM patients who had been 

prescribed metformin therapy as a part of their usual management between 

2005 and 2007. Patients were excluded if they consumed alcohol in excess of 

the recommended weekly safe drinking limits (>21 units in men; >14 units in 

women), and undertook any form of strenuous exercise (defined as more than 

typical walking pace) for a period of 8 hours prior to the study. Patients were 

also excluded receiving any known medications to affect metformin 

pharmacokinetics in the previous 4 weeks before the start of the study. Known 

medications are amantidine, cimetidine, clonidine, desipramine, midazolam, 

procainamide, quinidine, quinine, verapamil. There were no restrictions on 

caffeine or smoking.  

 

4.2.6.1 Metformin dosing 

Metformin was administered orally. In order to assess steady-state 

pharmacokinetics patients established a dose of metformin for at least three 

months and not missed a dose for a period of 5 days prior to sample collection. 

Compliance had been assessed through a validated compliance questionnaire. 

Metformin doses varied in respect of their usual treatment dose of 500, 850 and 

1000 mg which were taken once (oid), twice (bid) or three times daily (tid). 

 

4.2.6.2 Plasma time sampling 

Patients received their usual dose of metformin (500, 850 or 1000 mg) in the 

morning of the study. A maximum of three blood samples were subsequently 

collected at random time intervals following the same dose of metformin. The 

timing of the blood sample collection in relation to dosing was recorded and 

differed between patients. Dosing of metformin times ranged from 02:00 to 

12:50 with a median time of 08:17.  The first of the blood samples taken ranged 

from 08:37 to 15:10 with a median time of 11:19. Time from dose received and 

blood sample taken ranged from 4 to 545 minutes with a median time of 3 
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hours. Time between the first sample of blood taken and the last ranged from 45 

to 195 minutes with a median time of 80 minutes.  

 

4.2.6.3 Sample collection 

Blood was collected by venipuncture from the antecubital vein using a 21 gauge 

butterfly needle into vacutainers containing Ethylendiaminetetraacetic acid 

(EDTA) and centrifuged at 3000 rpm (1610 X g) for 10 min. Separated plasma 

was transferred and aliquoted into a 1 mL polypropylene tubes and stored at 

approximately -20oC until analysis. The study was approved by Liverpool Local 

Research Ethics Committee with clinical samples collected from the Royal 

Liverpool Hospital. All blood donors gave written informed consent before 

participating. Blank human plasma was obtained internally from healthy 

volunteers at the University of Liverpool.   

 

4.2.7 Effects of compounds on metformin determination 

For assessing the selectivity of the assay for the detection of metformin, the 

effect of concomitant medications that are typically co-prescribed in patients 

with T2DM was tested. Two concomitant groups were categorised for further 

investigation: those with a logP value of ≤0.5, predicted to interact with the 

hydrophilic-polar stationary phase of the HILIC column, and compounds that 

were being received by ≥10% patients, Table 4.2. To investigate whether a 

compound may affect the quantification of metformin, we analysed differences 

in peak height, AUC, retention time and the accuracy and precision between 

samples (n=3). The compound and metformin concentrations remained 

constant at 100 ng/mL. 

 
 
 
 



Chapter 4 

126 

 

Table 4.2 Comedications investigated to determine their effect on metformin 
quantification 

Compound Drug Class n  (%) 

Ipratropium Anticholinergic 2  (2.7) 

Lactulose Laxative 1  (1.3) 

Macrogol Laxative 1  (1.3) 

Levetiracetam Antiepileptic 1  (1.3) 

Theophylline Antiasthmatic 1  (1.3) 

Timolol maleate Antihypertensive 1  (1.3) 

Sotalol Antiarrythmic 1  (1.3) 

Moxonidine Antihypertensive 1 (1.3) 

Aspirin Anticoagulant 37  (49.3) 

Atorvastatin Lipid regulator 25  (33.3) 

Simvastatin Lipid regulator 23  (30.7) 

Furosemide Antihypertensive 18  (24) 

Rosiglitazone Antidiabetic 8  (10.7) 

Pravastatin Lipid regulator 8  (10.7) 

Paracetamol Analgesic 4  (5.3) 

Two groups of comedications were investigated for possible interference effects, those with a logP 
value of ≤0.5 and compounds present in ≥10% of the population group. 

4.3 Results  

4.3.1 Method development 

4.3.1.1 Column selection  

Metformin quantification was initially examined on an RP-C18 column 

(Phenomenex, UK). Initial experiments confirmed the poor retention of 

metformin on RP columns, (Figure 4.2). In order to increase retention time 

using a RP column 2 mM sodium dodecyl sulphate (NaDS) as a ion-pair reagent 

was included in the mobile phase. The retention time increased from 2.2 min to 

3.2 min, (Figure 4.2c). Unfortunately reproducibility between samples was 

unsatisfactory and for MS/MS detection, the inclusion of NaDS in the assay was 

not desirable. 
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Figure 4.2. Reverse phase 
chromatography of metformin from 
human plasma. 
 

UV detection at 235 nm.  

(A) Blank plasma.  

(B) Plasma spiked with 3 µg/mL 
metformin.  

(C) Plasma spiked with 3 µg/mL 
metformin with addition of NaDS in the 
mobile phase.  
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Figure 4.3 HILIC separation of metformin from human plasma. 
HILIC of metformin spiked plasma. (A) The gradient allows plasma components to elute between 2-3 
min and 12- 15 min; metformin elutes at 6.8 min. UV detection of 3 µg/mL at 235 nm. (B) MS/MS 
Chromatogram representation of a T2DM patient. Chromatogram illustrates the excellent resolution 
and low noise level. Internal standard phenformin; 50 ng/mL. 
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 A hydrophilic interaction liquid chromatography (HILIC) column was 

subsequently used for the method increasing their retention time and allowing 

metformin to be separated from the plasma components. The gradient method 

successfully retained metformin while allowing good separation from polar 

plasma components (Figure. 4.3a). The retention time using a HILIC column was 

6.6 min. 

 

4.3.1.2 Internal standard selection 

To eliminate different responses and increase assay accuracy and precision 

between batches, an internal standard of known concentration was included in 

the matrix. Two internal standards with similar chemical structural properties 

to metformin were investigated, phenformin and tetramethyl guanidine (TMG). 

These molecules all exhibit a guanidine backbone.  

Under optimal MS/MS operating conditions, phenformin but not TMG 

significantly decreased noise (response with no analyte present in sample) 

when no analyte was present in the sample thus increasing sensitivity.  

Additionally, TMG produced an undesirable tailing effect; therefore phenformin 

was selected as the most appropriate IS. Metformin and phenformin exhibited 

peak elution times of 6.6 and 5.6 min ± 3.8 sec respectively. 

 

4.3.1.3 Extraction procedure 

A liquid-liquid extraction procedure was evaluated and developed. A series of 

plasma:acetonitrile extraction ratios were used to determine an optimal ratio 

for complete protein precipitation. Although a 1:1 ratio was sufficient for 

complete precipitation in healthy plasma samples, this could not be applied to 

T2DM clinical samples as high plasma lipid levels interfered with the mass 

spectrometric instrumentation, preventing consecutive quantitative analyses. 

After exploring different extractant ratios, it was found that a ratio of 1:10 

averted the problem without significantly compromising assay sensitivity.  
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4.3.2 Method validation 

This study used validation procedures and acceptance criteria as laid down by 

the FDA and EMEA. A sequential summary is displayed in the flow diagram 

described in Figure 4.1. 

4.3.2.1 Limits of quantification and detection 

The LLOQ and LOD was determined as 300 pg/mL (0.3 pg on-column) with a 

precision of <15% (n=5) for both intra- and inter-day with a signal-to-noise 

ratio (s/n) of 5. The described method has a similar sensitivity to previously 

published methods (Liu and Coleman, 2009). The LLOQ was more than 

adequate for this study given the high metformin plasma concentrations 

observed in the T2DM patients. The ULOQ was found to be 300 ng/mL - 

concentrations exceeding this gave undesirable linearity and precision. 

Subsequently clinical plasma samples exhibiting a concentration >300 ng/mL 

were diluted. 

4.3.2.2 Selectivity 

Acceptable criteria state that a peak present at the retention time of the analyte 

and internal standard should be ≤20% and <3% at the LLOQ respectively. In 

relation to the developed method, the relevant peaks were <3% for both 

metformin and phenformin with no interfering peaks present at their retention 

times. 

4.3.2.3 Standard curve and linearity 

Standard curves were produced from extracted plasma samples, with 

concentrations ranging from 100 pg to 10 µg/mL using HILIC with MS/MS 

detection (Table 4.3). Concentrations between 300 pg – 300 ng/mL produced a 

coefficient of correlation (r2) value of 0.999 (n=10). All concentrations produced 

CV% values of <15. The equation of the final calibration curve was y = 0.1884x + 

0.0096 with an r2 value of 0.999 (Figure 4.4). Concentrations between 300 pg – 

3000 ng/mL produced acceptable precision and linearity, while concentrations 

above 300 ng/mL resulted in carryover. Therefore linearity in this method was 

evaluated to be 300 pg/mL – 300 ng/mL (Figure 4.4).  
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Table 4.3 Linearity of extracted plasma samples. 

 

Concentration range Day 1 (n = 2) Day 2 (n = 2) Day 3 (n = 3) 

r2 CV% r2 CV% r2 CV% 

300pg-3µg/mL 0.99675 0.0780 0.9991 0.0849 0.997633 0.0759 

300pg-300ng/mL 0.99935 0.00708 0.99955 0.0637 0.9995 0.0265 

 

Acceptable concentration range is between 300 pg/mL and 3µg/mL. As the ULOQ was evaluated to be 300 ng/mL two concentration ranges are shown. 
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Figure 4.4. Metformin standard curve.  
Concentrations shown ranged between 300 pg – 3000 ng/mL, see 4.3.2.3.
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4.3.2.4 Carry-over  

Carry-over was assessed by analysing calibration standards immediately 

followed by analysis a blank matrix sample. The responses in the blank samples 

were expressed as a percentage of the mean LLOQ. Although there are no 

acceptance criteria for carry-over, we wanted to minimise injection carry-over 

to <20% of the LLOQ to facilitate the quantification of low concentration 

samples following high concentration samples. The percentage carry-over of 

LLOQ for 300 ng, 1 µg and 3 µg/mL were 18.63%, 50.37% and 156.31 % 

respectively. Our results indicate that the absolute amount of drug the column 

can sustain without carry-over is 3 ng (10 µl of 300 ng/mL). 

4.3.2.5 Intra- and inter-day accuracy and precision 

Intra- and inter-day accuracy and precision were assessed by analysing QC 

samples within and between batches (Table 4.4). Throughout the development, 

validation and quantitative procedures, the column had passed 7.835 L of 

solution over >200 hours of run time, with peak elution times of metformin and 

phenformin on average 6.6 and 5.6 min, respectively, which differed ±3.8 sec 

over the course of the study. Throughout the length of the study, QC samples 

consistently produced acceptable accuracies and precision estimates.  

4.3.2.6 Recovery  

The liquid-liquid protein precipitation extraction method described produced 

absolute and relative recoveries with metformin ranges of 78.3-89.3% and 80.5-

100.6 % respectively. All concentrations tested had consistent and acceptable 

recoveries (Table 4.4).  

4.3.2.7 Stability 

Stability was assessed in QC samples under various conditions reflecting storage 

processes encountered in this experimental study, as listed in Table 4.5. All 

concentrations were acceptable with an accuracy of between 80-120%. All 

determinations of stability were satisfactory according to the acceptance 

criteria.   
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Table 4.4 Intra- & inter-day and absolute and relative recovery of metformin extraction precision and accuracy of metformin 

 

Standard 
(ng/mL) 

Inter-day (n=3) Intra-day (n=8) 
Absolute recovery 

(n=6) 
Relative recovery 

(n=6) 

Mean 
Precision 
(CV%) 

Accuracy 
(%) 

Mean 
Precision 
(CV%) 

Accuracy (%) % 
Precision (CV 

%) 
% 

Precision 

(CV %) 

LLOQ (0.3) 0.33 3.8 9.63 0.29 17.42 -3.06 78.3 16.2 80.5 19.2 

QC-Low (3) 2.92 7.29 -2.65 2.85 5.45 -4.86 98.2 11.5 98.7 15.1 

QC-Middle (30) 31.10 11.41 3.67 30.54 7.95 1.79 87.8 14.2 108.8 7.6 

QC-High (300) 327.14 2.56 9.05 343.26 6.12 14.42 89.3 13.1 100.6 14.1 

 

Precision is defined as coefficient of variance; CV(%) = (standard deviation/mean value) x 100. Accuracy is defined as Bias (%) = ((determined value – nominal 
value)/nominal value) x 100.. Absolute recovery was defined as the AUC of metformin in extracted plasma with reference to the AUC of metformin in buffer A (different 
matrix). The relative recovery was defined as the AUC of metformin in extracted plasma with reference to the AUC of metformin in spiked extracted plasma. 
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Table 4.5 Metformin stability under different conditions 

Condition Temperature Duration Sample 
Accuracy 

Bias (%) 

Precision 

CV (%) 

Short term 4°C 24 hr 

Low QC -6.95 2.22 

High QC -8.36 1.99 

Stock -2.21 1.91 

Long term -80°C 7 days 

Low QC 7.54 9.51 

High QC 4.96 2.64 

Stock 2.19 5.46 

Freeze-thaw -80°C 3 cycles 

Low QC -6.71 12.59 

High QC 6.58 4.46 

Stock 2.46 1.44 

Extract 4°C 24 hr 
Low QC 5.33 8.34 

High QC 6.48 4.61 

 

4.3.2.8  Robustness 

The HPLC-MS/MS method conditions were repeated at two separate sites, 

different HPLC and MS instruments and applied to two different HILIC columns. 

The chromatographic results and analyses were consistent, which could be 

attributed to the robustness and versatility of the method. 

 

4.3.3 Application to clinical samples 

The method was used to quantify metformin from 218 plasma samples from 75 

T2DM patients who had been prescribed metformin therapy as a part of their 

usual management. Three blood samples were collected at random time 

intervals following the last oral dose of metformin which ranged from 2 min to 9 

hours. Average intraindividual  metformin plasma concentrations (steady-state) 

ranged from 49 to 4908 ng/mL with an mean of 1879 ng/mL (Figure 4.5).  
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Figure 4.5. Metformin plasma concentrations post metformin dose. 
Black dots represent all 218 metformin plasma concentrations from 75 patients. The coefficient of 
variation (CV%) between multiple plasma levels of one individual were small (mean <20%)  
suggesting steady-state PK was achieved 

 

4.3.4 Effects of compounds on metformin determination 

In total, 104 comedications were being used by the patients in this study with an 

average of 5.96 prescription drugs per patient. We investigated two categorised 

comedication groups, those associated with >10% of patients and those with 

low logP values (Table. 4.6). There was no significant effect observed on the 

determination of metformin from plasma samples spiked with compounds 

investigated based on precision, accuracy, retention time and peak height 
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Table 4.6 Effects of other comedications on metformin quantification 

Compound LogP 
Precision  
(%) 

Accuracy 
(%) 

Ipratropium -3.712 2.57 2.89 

Lactulose -2.885 4.45 -1.41 

Macrogol -1.4 2.93 7.24 

Levetiracetam -0.67 4.83 9.54 

Theophylline -0.025 4.52 7.47 

Timolol maleate 0.189 5.97 5.80 

Sotalol 0.24 3.82 10.96 

Moxonidine 0.325 2.74 11.12 

Aspirin 1.399 2.11 9.52 

Atorvastatin 3.846 4.29 6.45 

Simvastatin 4.723 3.54 8.71 

Furosemide 2.304 4.38 5.34 

Rosiglitazone 3.023 2.84 4.66 

Pravastatin 2.21 2.56 8.64 

Paracetamol 0.475 2.66 5.12 

Metformin and comedications remained constant at 100 ng/mL. LogP values were obtained from 
ChemSpider database. All comedications were measured in triplicate and accuracies were calculated 
from the nominal metformin concentrations. 

4.4 Discussion 

Initially this project aimed to quantify metformin from human plasma using 

reverse phase chromatography. Although, as Table 4.1 shows, reverse phase 

chromatography has been extensively used, initial experiments confirmed the 

poor retention of metformin on reversed-phase columns, as reported by other 

groups (Chen et al., 2004, AbuRuz et al., 2003). What is not apparent or stated 

by these studies is the quality of the reverse phase columns used for metformin 

retention. Van de Merbel et al., 1998 showed prolonged use of reverse phase 

columns can result in the loss of C18 groups from the polymer used exposing a 

bare silica surface, transforming the stationary phase from hydrophobic to 

hydrophilic (van de Merbel et al., 1998). They suggested that the quality of the 
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available reverse phase columns today are better than the columns available in 

the early 1990s. It is extremely rare that a study will state or record the history 

of the column including number of runs and changes in retention times of the 

analyte over an extended period of time. Therefore we have to assume the 

equipment used in retrospective studies are reliable and in the condition as it 

was originally. This might not be the case, however. 

Consistent with other reports (AbuRuz et al., 2003), we found that the addition 

of sodium dodecyl sulphate (NaDS) as a ion-pair reagent in the mobile phase 

increased the retention time of metformin by 1 min. We propose that the 

negatively charged head group of NaDS molecules interacts with the positively 

charged metformin molecules while its hydrophobic tail interacts with the 

hydrophobic C18 groups of the column’s stationary phase as depicted in Figure. 

4.6b. Unfortunately, reproducibility between samples was unsatisfactory and 

for MS/MS detection, the inclusion of NaDS in the assay was not desirable. 

A HILIC column was subsequently used for the method. The HILIC column’s 

mixed-diol polar groups allowed strong dipole-dipole interactions between 

polar molecules, metformin, and the stationary phase (Figure. 4.6c), increasing 

metformin’s retention time and allowing exceptional separation from plasma 

components. The buffers were maintained at an acidic pH (5.1) in order to fully 

protonate metformin. The gradient mobile phase is essential for UV detection in 

allowing metformin retention while eluting polar plasma components between 

1-3 minutes and 10-12 minutes (Fig. 4.3b). This is additionally advantageous in 

removing all retained plasma contaminants from the stationary phase which 

may interfere with subsequent high-throughput sample analysis and decrease 

column lifetime.  

The HILIC chromatography method unlike others previously reported is 

transferable to either UV or MS detection. The use of UV detection for the 

method was investigated, but as metformin exists as a small molecule with no 

aromatic groups (Appendix 4.7.1), a selective wavelength could not be used 

exclusively to detect metformin.  This resulted in high background noise and 

contributed to an unacceptable LLOQ of ~1 µg/mL. Although the described  
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Figure 4.6 Predicted analyte-column interactions of metformin 

 

Predicted analyte-column interactions 
of metformin with different column 
stationary phases and conditions.  

(a) Reverse phase C18  

(b) Reverse phase C18 + NaDS  

(c) HILIC (mixed diol). 
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HPLC method does allow for both UV and MS/MS detection, due to the poor 

LLOQ of the UV detection, MS/MS detection was subsequently used to validate 

the method and its application to clinical samples.  

Two compounds were evaluated as internal standards; phenformin and 

tetramethyl-guanidine (TMG). Under optimal MS/MS operating conditions, 

phenformin but not TMG significantly decreased noise when no analyte was 

present in the sample.  Additionally, TMG produced an undesirable tailing effect; 

therefore phenformin was selected as the most appropriate IS.  

The liquid-liquid extraction procedure was simple, quick and required no drying 

or concentration of samples which could compromise sensitivity. A series of 

plasma:acetonitrile extraction ratios were used to determine an optimal ratio 

for complete protein precipitation with minimal plasma dilution to increase 

assay sensitivity. Although a 1:1 ratio was sufficient for complete protein 

precipitation in healthy plasma samples, this could not be applied to T2DM 

clinical samples.  Approximately 75% of the T2DM patients receiving metformin 

were diagnosed with dyslipidaemia and their high plasma lipid levels interfered 

with the mass spectrometric instrumentation, preventing consecutive 

quantitative analyses. The interference did not involve the ionisation or 

quantification but physically with the instrumentation. Although a higher ratio 

of organic solvent to sample could increase lipid solubilisation we found that a 

ratio of 1:10 averted the problem without significantly compromising assay 

sensitivity. Lui and Coleman (Liu and Coleman, 2009) also used protein 

precipitation to extract metformin from human plasma. However, it is likely that 

their plasma:extractant precipitation ratio of 1:5 could not be applied to T2DM 

plasma samples since extractant ratios less than 1:8 were found to incur 

problems with the mass spectrometic apparatus due to the high lipid levels 

observed in T2DM patients. Furthermore, we found that their isocractic mobile 

phase did not elute plasma components quickly or efficiently which could 

remain retained on the column.  To our knowledge, this is the first study 

reporting the effects of lipid levels in serum of T2DM patients impeding mass 

spectrometric detection.  
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The assay as described in this report has acceptable linearity between 300 pg – 

3 µg/ml with excellent linearity between 300 pg – 1 µg/mL. This 1000 fold 

linearity is consistent with Liu (Liu and Coleman, 2009) who also used HILIC 

and reported a linearity range of 500 pg/mL – 500 ng/mL However, the 

precision decreases above concentrations of 1 µg/ml as the HILIC column was 

becoming fully saturated and contributing to carryover. This could account for 

the fall in r2 values at concentrations >1 µg/ml. Therefore the upper limit of 

quantification was investigated and evaluated to be 300 ng/mL. At this 

concentration, the carry-over of metformin was <20%. When analyzing a high 

metformin plasma concentration from a clinical sample, a blank matrix sample 

was used following the reanalyzed sample.  

The method was used to quantify metformin from 218 plasma samples from 75 

T2DM patients who had been prescribed metformin therapy as a part of their 

usual management. The metformin plasma concentrations ranged from 49 to 

4908 ng/mL with an average of 1879 ng/mL, equating to a 100-fold difference 

in metformin plasma concentrations between patients receiving 0.5-3 g per day. 

This finding is consistent with Christensen et al., 2011 who report an 80 fold 

variability when using 2.0 g a day.  All patients achieved steady-state metformin 

plasma concentrations which were independent of the time the blood samples 

were taken following metformin administration. 

This study demonstrated there was no significant effect observed on the 

determination of metformin from plasma samples spiked with compounds 

investigated based on their precision, accuracy, retention time and peak height. 

Medications analysed were those associated with treating comorbidities 

associated with T2DM, including dyslipidaemia (atorvastatin, simvastatin, 

pravastatin) and hypertension (furosemide). The logP values were acquired 

from the chemical database, ChemSpider. LogP values ranged from -3.712 to 

8.945 with an average of 2.56. In total 15 compounds were selected for 

investigation. We predicted that compounds with low logP values would be 

most likely to be retained on the HILIC column; however none of these 

compounds investigated exhibited an effect on metformin quantification, 

demonstrating the high selectivity of the developed method. Only parent 



Chapter 4 

142 

 

compounds were investigated and no assessment was made of their potential 

metabolites, which could exhibit different logP values. Given the range of 

compounds investigated and the fact that even low logP compounds were not 

retained on the HILIC column, it is likely that other comedications present in the 

patient samples had no effect on metformin quantitation using this assay. 

A systematic and thorough validation procedure was performed and applied to 

a developed HILIC analytical method for the determination of metformin in 

plasma samples from T2DM patients. The HPLC method can be used for both UV 

and MS/MS detection and not influenced by concomitant medications or by the 

presence of high lipid levels in the plasma samples, which were removed using 

an improved sample extraction technique. HILIC-tandem MS/MS proved to be a 

reproducible, precise and robust method for application to pharmacokinetic 

studies. The metformin plasma levels obtained in this chapter will be used for 

PopPK modelling in chapter 5. 
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5.1 Introduction 

Pharmacometrics is defined as the science of developing and applying 

mathematical and statistical models to understand and predict a drug’s 

pharmacokinetics and pharmacodynamics (drug models) and biomarker-

outcomes behaviour (disease models). In addition, these models can be linked 

and applied to support clinical study design (Powell and Gobburu, 2007).  It 

widely accepted that subjects receiving the same dose of a drug exhibit high 

variability in PK, drug efficacies and toxicities risk. The population approach 

attempts to understand such PK/PD differences among a sub-population and 

determine and classify sources of variability. Population pharmacokinetics 

(PopPK) is defined as the study of the sources of variability in drug 

bioavailability among individuals who are the target patient population 

receiving clinically relevant doses of a drug of interest. This knowledge is 

applied to develop rational guidelines for individualised drug dosage regimens, 

which can significantly increase drug efficacy and safety.  PopPK has been 

widely used in a number of drug studies over a wide range of drug classes 

during drug development including, anticoagulants, antibacterial and anti-

cancer drugs (Lee et al., 2012, Zhao et al., 2012, Menon et al., 2006).   

PopPK modelling aims to understand the mean population response and 

identify, and explain, the variability using demographic and biological data to 

derive information about an individual, which may not be obtained from each 

individual directly. 

Despite PopPK methodology being used since the 1970s the first report of its 

use with metformin was published in 2006 and investigated the 

pharmacokinetic disposition of metformin in late pregnancy and in fetal 

exposure at birth (Charles et al., 2006). Since then several PopPK and PD studies 

of metformin have been undertaken in both healthy volunteers and with T2DM 

patients (Table 5.1).  

The overall objectives of the studies described in this chapter are to investigate 

the pharmacokinetic properties of metformin in T2DM patients using a 
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Table 5.1 Previous metformin PopPK studies 

Reference 
Hong et al., 2008  Bardin et al., 2012   Chae et al., 2012 Yoon et al., 2013  Gruen et al., 2013 

 de Oliveira 
Baraldi et al., 
2011 

 Duong et al., 2013 

Recruitment area New York, USA Paris, France South Korea South Korea Germany Brazil Malaysia 

T2DM Yes Yes No No No No 120 T2DM, 185 Healthy  

n 12 105 42 96 23 8 305 

Male % 25% 63% 100% 100% - 0% - 

Age (years) 56  62 (34-87) 26  22.41 (19-31) 31 (18-60) 26 (18-40) 28 (18-86) 

Weight (kg) 89  90 (49-149) 69  68 (53-96) 52 95 (80-126) 65 (41-165) 

CLCR(ml/min) 83  103 (33-227) 107  - 110±24 
 

65 (41-165) 

Dose (mg) 500 - 850 bd (5d)  500-3000 od 500 od 500 od 500 tid   850 bd 250-3000 od 

Sample collection 
time post dose 
(n) 

Trough d7-9 (15) Trough 0- 6hr (3) 0-12hr (11) 0-24hr (12) 0-8hr (12) 0-12hr (17) - 

Compartment 1 1 1 1 Non 
compartmental 

Non 
compartmental  

2 

Order 1st - 1st 1st Zero & 1st 

 
Estimates ISV Estimates ISV Estimates ISV Estimates ISV Estimates  Estimates Estimates ISV 

Ka (h-1) 
2.15 
(20.8) 

58 (50) 0.51 (36) 0.39(4) 0.41 (2.4) 29.7 0.25 (3.0) 
0.06 
(10) 

-  - 0.35 (2.5)  - 

CL/F (L.h-1) 79 (6.8) 23 (60) 56 (6) 0.71(5) 52.6 (4.2) 22.1 
136 
(18.4) 

0.08 
(13) 

74 (65-84)  105 (60-274) 73 (2.3)  34 (12)  

V/F (L) 
648 
(13.8) 

43 (47) 558 (22) - 113 (57) - 112 (6.9) 
0.30 
(15) 

286 (245-333)  551 (385-1173) 149 (4.2) 54 (12) 

Summary of previous PopPK studies with metformin.  ISV; inter subject variability, od; once daily, bd; twice daily, tid; thrice daily. Values represented are means (range). 
Estimate and ISV values in brackets are Relative standard error (RSE).   
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nonlinear mixed-effect modelling approach and to evaluate the effect of clinical 

covariates and transporter genetics on the pharmacokinetics of metformin and 

vitamin B12 levels. With the additional data described in chapter 2, we also 

aimed to characterise the relationship between plasma metformin 

pharmacokinetics and the presence of polymorphisms in human organic cation 

transporter genes in T2DM patients on chronic metformin therapy. 

5.2 Materials & Methods 

5.2.1 Study Subjects 

T2DM patients, as described in chapter 2, were recruited at the Royal Liverpool 

and Broadgreen University hospitals between 2005 and 2007.. In total 75 (45 

(59%) male; 31 (41%) women) individuals were enrolled for the study.  

 

5.2.2 Population pharmacokinetic analysis 

5.2.2.1 Software  

Development and analyses of population PK/PD models, were performed using 

the software NONMEM version 7.2 (NONMEM Project Group, University of 

California at San Francisco, 1998)(Beal and Sheiner, 1980) using an open-

source Fortran 2003 complier on Microsoft Windows. Graphical model 

diagnostics were produced and explored using, SPSS Statistics package version 

20.0.0.1 (IBM) and Microsoft Excel 2007. Multiple imputations runs were 

performed using NORM version 2.03 (Schafer, 1999). 

5.2.2.2 Normal distribution analysis 

To assess if the data variables fell within the normal distribution, normality 

curves and normality tests were produced using SPSS. The Kolmogorov-

Smirnov and the Shapiro-Wilk’s tests were both used to assess normality. For 

both tests a significance level of 0.05 was used. Variables not within a normal 

distribution were transformed in a sequential order and reassessed using Log10, 
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SQRT, or SQRT(SQRT). Data outliers were identified through analyzing 

histograms. 

 

5.2.2.3 Multiple Imputation 

Any associations between covariates and each gender were revealed through 

graphical plot (covariate vs sex blox plots). Any associations between covariates 

were used in the NORM software package for imputation data 

(http://sites.stat.psu.edu/~jls/misoftwa.html).  Six separate data sets were 

generated for both male and female populations and the mean of each 

imputated variable as the final model estimate.  Each imputated data value was 

assessed graphically to determine if they fell within the normality plots and 

were not themselves an outlier. Models using imputated data were re-run and 

compared with models using median values to see if they significantly 

influenced the objective function. Although small differences, of no less than  1.6 

were observed, these were not significantly different and demonstrate the MI 

data could be utilised in the input data.  

 

5.2.2.4 Base Model 

The population PK analysis for the data set was performed by using NONMEM
 

with the subroutine ADVAN2, TRANS2. The first order conditional estimation 

with interaction (FOCEI) method was used to estimate parameters. 

The models were parameterised using clearances and volume of distribution 

and absorption constants using the PREDPP subroutine supplied in NONMEM. 

Inter-subject variability (ISV) of the pharmacokinetic parameters was modelled 

assuming a log-normal distribution, as follows: 

 

θi = θTV • EXP(ηi) 
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Where θi is the estimated parameter value for individual i, θTV represents the 

population’s typical value for the corresponding parameter. Initial values for 

parameters were chosen based on previous studies, as displayed in table 1. ηi is 

the deviation of θi from θTV known as the between subject variability (BSV). 

The η random effects were assumed to be independent and symmetrically 

distributed with zero mean and variance ω2, which represents the ISV of the 

parameter. The magnitude of ISV was expressed as coefficient of variation 

(%CV). A combined proportional-additive error model was tested to explain the 

residual variability (RV) of untransformed data. The error model is as follows: 

 

Y=F+F*ERR(1)+ERR(2) 

(1) 0.09 (30%) 

(2) 100 (ng/ml) 

ln Cij = ln Cpred,ij + εij 

 

where Cij and Cpred,ij represent the jth observed and model predicted 

concentrations, respectively, for individual i and εij denotes the additive 

residual random error for individual i and observation j. The ε random effects 

were assumed to be independent and symmetrically distributed with mean of 

zero and variance σ2. Model selection decisions were based on a number of 

different criteria, including objective function value (OFV), condition number, 

visual examination of index plots, the precision of the parameter estimates 

(%RSE) and the reductions in both ISV and RV.  

NONMEM minimizes -2log likelihood as the OFV which maximises the likelihood 

value (Beal and Sheiner, 1980). With regard to NONMEM, the likelihood is a 

statistical answer to the question: If the model was true given the present values 

parameters, how likely would the predicted values have been observed? 

Therefore a useful model has predicted observations that are quite likely. 

Conversely a poor model would produce observations that are not likely and is 

not adequate to describe the data. The distribution of -2 log follows a X 2 

distribution with the degrees of freedom being the difference in the number of 
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parameters. Once a base model was defined, its robustness was assessed before 

implementing covariates into the model. This was achieved through changing 

the model parameters.  

 

5.2.2.5 Univariate analysis 

Once a base model can be identified, the possible influence of covariates on the 

estimated pharmacokinetic parameters and inter-individual variability can be 

assessed. There were many covariates available for analysis; however, we chose 

to examine covariates, which were predicted to have an impact on the estimated 

parameters based on the available data in the literature and the physiochemical 

properties of metformin. Graphical analysis of the individual parameter estimate 

(CL) versus covariates was evaluated to help identify possible covariate 

relationships.  

Categorical covariates included in the analysis were sex (female or male). The 

continuous covariates to be analysed were age, body weight (WT), height (HT), 

body mass index (BMI), serum urea (UREA), serum creatinine (CREAT), 

estimated creatinine clearance (CLCR), and glomerular filtration rate (GFR). BMI, 

GFR and CLCR were calculated as follows: 

 

BMI =WT/HT2 

GFR =186*((CREAT/88.4)^-1.154)*(AGE ^-0.203)*SEX 

(If female then SEX=0.742, if male then SEX=1) 

CLCR was calculated using the Cockcoft-Gault equation = (((140-

AGE)*WT)/CREAT)*SEX 

(If female then SEX=1, if male then SEX=1.2) 

 

The covariates were included in the model building process through the 

forward addition procedure. All continuous covariates were centred around the 

median meaning the population estimates represent those of an average patient. 
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Centring the covariate around the mean assumes the data is within normal 

distribution. Each covariate model was tested using linear, power and 

exponential functions using the following equations: 

 

θi = TVCL• EXP(ηi)  where, 

 

Linear :                TVCL = θTV + θCOV • (TVCOV - x̄COV) 

Power:                 TVCL = θTV • θCOV • (TVCOV - x̄COV) 

Exponential:       TVCL = θTV • (TVCOV/ x̄COV) ^θCOV 

          

Where θi is the estimated parameter value for individual i, θTV is the typical 

value for clearance of an individual with the typical value of the covariate value 

(TVCOV) centred around the mean (x̄COV) and θCOV represents a factor describing 

the influence of the covariate. Initial θCOV values were obtained from 

corresponding regression line equations through plotting the estimated 

parameter values vs the covariate.  

 

 

Figure 5.1.  Schematic representation of effect models 
Schematic representation of the three models for continuous covariates with the typical value of the 
parameter, clearance, vs the covariate θCOV. 
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The binary covariate, gender, was modelled using the following relationship: 

 

θi = TVCL• EXP where: 

 

if sex is equal to 0, TVCL = x 

if sex is equal to 1, TVCL = y 

 

where subjects coded with 0 (female) TVCL is equal to the predefined typical 

value of x and with 1 (male) TVCL is equal to the predefined typical value of y. 

 

5.2.2.6 Genetic covariates 

For modelling purposes, SLC22A1 and SLC22A2 genetic variants were labelled 

using two methods. Firstly, variants were labelled to conform to a dominant 

model (wild-type vs heterozygous + homozygous) as 0 and 1, respectively. 

Secondly, SNPs were labelled into three groups, based on the genotype, wild-

type, heterozygous and homozygous as 0, 1 and 2 respectively 

(recessive/additive model).  We decided not to include a recessive model for all 

the included variants, as most variants are heterozygous with low number of 

homozygous patients for comparison in a model. Additionally any significant 

change in OFV between groups will be observed in the multi-comparison model 

(WT vs Het vs Hom). The MAF for inclusion of SNPs was 0.05. 

The variants were modelled using a template used for modelling gender: 

 

θi = TVCL• EXP where: 

 

if SNP1 is equal to 0, TVCL = x 

if SNP2 is equal to 1, TVCL = y 
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where subjects coded with 0 (wild-type) TVCL is equal to the predefined typical 

value of x and with 1 (heterozgous+homozygous) TVCL is equal to the 

predefined typical value of y. As we could only estimate individual CL values we 

firstly included SNPs from SLC22A2 (OCT2) which is expressed in the kidney 

impacting on metformin clearance. We however included variants from OCT1 to 

explore if they would have an impact on the OFV.  

Typical values of x and y were initially estimated using information cited in the 

literature to whether a particular variant would increase or decrease transport 

function and thus influence the estimation of clearance. For example, rs316019 

SNP in SLC22A2 is predicted to decrease transport function and thus would lead 

to a decrease in metformin clearance. The typical values of x and y were 

modelled in two ways; as a fraction (0.5 =50%, clearance could be decreased by 

50%), or as a integer. 

 

5.2.2.7 Haplotypes 

A number of SNPs and variants, as described in chapter 3, are in linkage 

disequilibrium, Figure 3.4. In population genetics, linkage disequilibrium is the 

non-random association of alleles at two or more loci. Consequently an 

individual will express the same haplotype for two or more SNPs.  

We also ran another model using a haplotype containing the p.R61C SNPs and 

p.M420del. These two were chosen as these SNPs were in complete LD with 

other variants expressed in SLC22A1 (p.R61C is in LD with p.L160F, p.M408V; 

p.M420del is in LD with p.M408V). This resulted in 4 groups included in the 

p.M420del/R61C model; WT/WT, V/WT, WT/V and V/V where WT=wild-type 

and V= variant (either heterozygous or homozygous for the variant 

respectively). 

We also grouped patients into patients carrying an nsSNP (SNP encoding amino 

acid substitutions) and grouped them vs wild-type. 
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5.2.2.8 Multicovariate analysis 

Before employing multiple covariates in to model building, significant 

covariates pairs were assessed for multicollinearity, (Appendix Table A5.1). 

Individual scatter plots of covariates pairs were examined. Traditionally the 

advice for multivariate analysis is not to use covariates that present 

multicollinearity, but for the purposes of discussion, we used all the covariates 

for  model building with the knowledge of multicollinearity.  

Covariates reducing the OFV by >6.63 points were chosen for multivariate 

analysis which were; urea, age, CLCR and creatinine. A forward inclusion step 

was implemented using the covariate first with the biggest change; urea. 

Therefore the OFV for base + urea (2937.38) was used as a starting value. 

5.2.3 Model Selection & Evaluation  

The decision for inclusion of a covariate in a model was made based on a 

combination of statistical significance (change in OFV), biological mechanistic 

plausibility and the clinical relevance of the relationship.  Model discrimination 

was based as a change in the objective function values (OFV), the statistic 

proportional to minus twice the log likelihood of the data.  In the forward 

addition step a decrease in the OFV of 6.63 was considered statistically 

significant (p-value <0.01) for the addition of one covariate.  

The accuracy and robustness of the final population model were evaluated using 

visual predictive checks. The predicted metformin estimates for 250 data sets at 

time points at hourly intervals (from 0.5 to 9.5 hour) were generated from the 

parameters and variances for both the base model and the final model for 

comparative analysis. The 90% prediction intervals (5th percentile, median and 

95th percentile) of simulated metformin concentrations corresponding to the 

observed values were calculated and plotted for comparison with observed 

values. 
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5.3 Results 

5.3.1 Base model  

The data were best represented using a 1-compartment model with first-order 

absorption and elimination from a central compartment as implemented in 

NONMEM using its ADVAN2 TRAN2 subroutine. The estimated structural model 

parameters included absorption rate constant (Ka), volume of distribution 

(V/F) and clearance (CL/F) where F is oral bioavailability. The data did not 

support ISV on Ka and V as characterised by poor precision of the parameter 

estimates and inability to converge successfully. Furthermore, the model fixing 

these parameters did not significantly increase either the OFV.  The normality 

tests suggested that the raw metformin concentrations were normally 

distributed. Transforming the data (SQRT) depicts the data is within the normal 

distribution. However transforming the data did not influence the base model 

estimated parameters or OFV. Therefore data was left untransformed for 

analysis. Initial estimates were obtained from previous models in the literature 

with similar population characteristics. The control stream for the base model 

can be viewed in the appendix. 

The population base model CL/F was 57.2 (L/h), RSE 6.8%, V/F was 391 (L), 

RSE 23% and Ka 0.605 (h-1), RSE 26.7%.  The OFV for the base model was 

2971.879. Relative standard error for CL and Ka was 26.4%   and 4.31% 

respectively whereas V was associated with a higher degree of uncertainty with 

2061.4%. The ISV estimate for CL was 52%. 

All base model parameters were changed in order to determine if the model was 

stable. The OFV did not change significantly (Δ=0.001) and parameter estimates 

remained unchanged indicative of a stable base model. In general, the diagnostic 

plots, (Figure 5.2), showed an acceptable model fit to the observed data. The 

individual-predicted concentrations (IPRED) versus observed metformin 

concentrations exhibited a good correlation (r2=0.8954) but the population-

predicted (PRED) showed poor fitness (r2=0.221) indicating that covariates 

may increase the fitness. As illustrated, the predicted metformin concentrations 

did not exceed 2700 ng/mL despite a number of observed concentrations 
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exceeding this level. The distribution of the weighted residual plot values 

(Figure 5.2 C) were around zero and relatively symmetric across the range for 

the predicted concentrations although peak WRES values were overestimated in 

a few individuals with low predicted metformin concentrations. Examples of 

individual patient plots for comparison of observed, IPRED and PRED 

illustrating good fit and poor fit are displayed in Figure 5.3. Once a base model 

was defined robustness was tested before implementing covariates into the 

model. 

 

Figure 5.2. Goodness of fit plots for base model 
[A] Individual predicted concentration versus observed concentration, R² = 0.8954 [B] Population 
predicted concentration versus observed concentration. R² = 0.221. The solid lines are lines of 
identity; a model which is representative of the data will show points as close to the line as possible. 
Population predicted shows poor goodness of fit due to variability in the population, which may be 
resolved by including covariates into the model. [C] and [D] Conditional residual plot and weighted 
residual (respectively) plot for the base model, these display any unaccounted heterogeneity within 
the data.  
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Figure 5.3. Individual PK patient estimations examples 
This illustrates the individual predicted model gives better estimates than the population predicted. 
Both individual an population predicted have parallel values.   



Chapter 5 

158 

 

5.3.2 Uni-covariate modelling 

As metformin CL was the only population PK parameter that could be estimated, 

covariates were included in the model which could potentially impact kidney 

function or are related to metformin pharmacokinetics. The univariate analysis 

used a forward addition stepwise inclusion procedure. A decrease of 6.63 points 

in the OFV was considered statistically significant (p-value <0.01).   

Each covariate using the three model relationships produced very similar OFVs.  

Model relationships were chosen based on the parameter estimates, standard 

error and model error, table 5.3.  

Table 5.3. Univariate covariate impact on OFV. 

Model  Relationship OFV OFV ∆ p value 

Base - 2971.879 - - 

Base + Urea Linear 2937.38 34.50 <0.00001 

Base + CLCR Exponential 2951.66 20.22 <0.0001 
Base +Age Exponential 2957.536 14.34 <0.0002 
Base + Creatinine Linear 2961.546 10.33 <0.0020 

Base + rs113569197 Categorical 2963.293 8.59 <0.004 

Base + GFR Exponential 2965.983 5.90 <0.020 

Base + Albumin Exponential 2966.22 5.66 <0.020 

Base + BMI Linear 2971.182 0.70 <0.45 

Base + Lactate Linear 2971.182 0.70 <0.45 
Base + LBW Linear 2971.410 0.47 <0.65 
Base + Weight Exponential 2971.639 0.24 <0.65 
Base +Sex Categorical 2971.811 0.07 <0.80 
Base + Height Linear 2971.832 0.05 <0.85 
Base + IBW Linear  2971.861 0.02 <0.90 
Base + Length of 
metformin 
             treatment 

Linear 2991.583 19.7a - 

Covariates above the dotted line displayed reduced the OFV by >6.63 points (p-value <0.01) and are 
considered significant descriptors of metformin clearance. 

a
  This covariate increased the OFV, thus is 

not significant. 

 

Urea was shown to be the best descriptor for clearance. The ISV estimate for CL 

in the base model with the inclusion of urea as a covariate (base+urea) was 

39.5%. A more detailed summary of the base+urea model is presented in Table 

5.4. The goodness of fit plots for the base model show a good correlation 

suggesting that the resulting model fits the observed data well, (Figure 5.4).  
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Figure 5.4. Goodness of fit plots for urea model. 

 

 [A] Individual predicted concentration versus observed concentration, R² = 0.8927 [B] Population 
predicted concentration versus observed concentration. R² = 0.4903. Population predicted shows 
improved goodness of fit as serum urea levels have explained some variability in the population. [C] 
and [D] Conditional residual plot and weighted residual (respectively) plot for the base model, these 
display any unaccounted heterogeneity within the data.  
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Only one genetic variant, rs113569197 in SLC22A1, significantly reduced the 

OFV. All other genetic variants, haplotypes and grouped variants did not 

significantly impact the OFV, (Table 5.5). rs113569197 reduced the OFV by 8.59 

points equivalent to a p value of <0.004. Further analysis revealed the recessive 

model, but not the dominant model significantly reduced the OFV (∆ OFV  8.22).  

 
Table 5.5. Genetic variants impact on OFV in univariate modelling  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary of genetic variants as covariates on the OFV. MAF >5%. SNPs which are in linkage 
disequilibrium; 

a
 in LD with rs7762846, 

b
 in LD rs3103353, rs3127593 and rs3127592.  Dominant 

model, homozygous variant (-/-) + heterozygous (+/-) vs wild-type (+/+). Recessive model, wild-type 
(+/+) + heterozygous (+/-) vs homozygous (-/-). 

 

 To elucidate the effect of the rs113569197 on metformin clearance a plot was 

produced revealing the patients with the WT genotype had a significantly 

increased metformin clearance when compared with the other genotypes, figure 

5.5. The WT genotype exhibited a significant increase when compared to 

heterozygous and homozygous insertion genotypes (p<0.03). There was no 

significant difference in metformin clearance between homozygous insertion 

and the heterozygote group (p=0.929). 

 

 

Variant included in 
base model 

∆ OFV  
(+/+, +/-, -/-) 

∆ OFV 
(Dominant) 

∆ OFV 
(Recessive) 

SL
C

2
2

A
1

 (
O

C
T

1
) 

rs12208357 N/A 0.730 - 

rs683369 1.562 0.598 0.553 

rs45584532a 0.319 0.224 - 

rs628031 0.970 0.620 0.964 
rs72552763 3.896 2.626 - 

rs113569197 8.588 1.684 8.220 

rs9457843 1.762 0.463 - 

rs622591 2.036 0.064 1.997 

SL
C

2
2

A
2

 (
O

C
T

1
2

) 

rs3127573 2.029 1.708 - 

rs316023 0.229 0.286 0.155 

rs34129302 2.088 1.746 - 

rs624249 1.358 1.166 0.556 

rs2774230 1.843 1.725 0.001 

rs316019 0.417 0.417 - 

rs2279463 0.639 0.068 - 
rs316003 0.846 0.039 0.848 

rs3127594b 2.610 2.294 - 

rs2450975 0.850 0.102 0.842 

rs694812 0.900 0.900 - 
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Figure 5.5. rs113569197 variant effect on metformin clearance. 
Estimated population metformin clearance between rs113569197 genotypes. Homozygous deletion 
exhibited a significant increase in metformin clearance. Non-parametric tests were used; Kruskal-
Wallis p = 0.038 between the three groups and Mann-Whitney for analysis between two groups. 

 

5.3.3 Multivariate analysis  

Covariates reducing the OFV by >6.63 points were chosen for multivariate 

analysis, which were; urea, age, CLCR and creatinine. A forward inclusion step 

was implemented using the covariate first with the biggest change; urea. 

Therefore the OFV for base + urea (2937.38) was used as a starting value. 

However, we also used base + CLCR as a second unicovariate model for model 

building.  

In the forward addition step, a more stringent criterion was used to avoid any 

possible false-positives or artefacts; with a decrease in the MOFV of 10.60 was 

p=0.929 

p=0.029 

p=0.014 
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considered statistically significant (p-value < 0.005) for addition of two 

parameters to the model.  

Table 5.6. Multivariate impact on the base+urea/CLCR models OFV. 

Model Relationship OFV OFV ∆ p value 

Base + urea Linear 2937.38 - - 

Base + urea + age Linear  2931.188 6.19 <0.05 

Base + urea + 
rs113569197 Power 2932.522 4.856 

<0.09 

Base + urea + CLCR Power 2934.934 2.444 <0.3 

Base + urea + creatinine Power 2935.917 1.461 <0.5 

     

Base + CLCR Power 2952.73 - - 

Base + CLCR + 
rs113569197 Power 2946.11 6.621 

<0.04 

Base + CLCR + age Power 2951.66 1.069 <0.6 

Base + CLCR + creatinine Power 2950.46 2.269 <0.35 

Two models (urea and CLCR) were used for multivariate analysis. In comparison to the two univariate 
models the addition of other covariates did not significantly change the OFV. 

 

The multivariate analysis showed the addition of other covariates to the models 

did not significantly decrease the OFV by 10.6 points and therefore did not 

explain more variability than the univariate models. The inclusion of age in the 

base + urea model decreased the OFV more than other covariates but was not 

significant. Similarly, the addition of the rs113569197 variant in the base + urea 

+ CLCR model reduced the OFV the most, but was not significant. Tbale 5.4 

displays a detailed summary of base+urea and base+CLCR models. 

5.3.4 Model evaluation  

Two hundred and fifty simulations for each time point were acquired. The mean 

parameter estimates resulting from the simulation analysis were very similar to 

the population estimates of the final model and were within the 95% confidence 

intervals. These results indicate that the model was stable and robust. Figure 5.6 

shows the results of the visual predictive check for metformin plasma 

concentrations vs time. The final model adequately described the observed 

concentrations.   
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Table 5.4. Detailed summary of the two top models  

 

 

 

 

 

 

 

 

 

 

 

Model OFV Relationship OFV ∆ 
Random effects BSV Error model 

Condition 
number 

Shrinkage 
Parameter Estimate 

RSE 
(%) 

% RSE 
  

RSE 

Base 2971.879 - - 

CL 57.2 6.79 51.96 1.24 Prop 16.82 23.57 

- <17% V 391 22.96 - 
 

Add 169.12 47.55 

Ka 0.605 26.70 - 
    

Base 
+ CLCR 

2951.66 Exponential 20.219 

CL 55.8 3.41 43.82 23.49 Prop 16.40 24.39 

18.89 <17% V 416 2.44 - 
 

Add 182.48 44.14 

Ka 0.615 68.99 - 
    

Base 
+ 
Urea 

2965.983 Linear 34.501 

CL 62 5.73 39.50 22.05 Prop 16.43 23.33 

15.85 <17% V 396 22.80 - 
 

Add 182.76 42.81 

Ka 0.645 26.20 - 
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Figure 5.6. Simulated concentration-time profile from the final base+urea model. 
Black circles are the observed metformin time profiles of the 75 T2DM patients. The middle green 
line represents the median values of the 250 simulated values. The top and bottom green line 
represents the 95th and 5th percentile respectively. The top, middle and bottom red lines represent 
the 90th, median and 5th percentile for the base model respectively. 

 

5.4 Discussion 

 

The quantified metformin plasma levels from Chapter 2 was used successfully 

used in a PopPK model for estimating the metformin clearance in T2DM 

patients. The 100-fold difference observed in metformin plasma concentrations 

between patients receiving 0.5-3 g/day is consistent with Christensen et al who 

reported 80-fold variability in those using 2.0 g a day (Christensen et al., 2011). 

They suggest that the activity and genotype of the organic cation transporter; 

OCT1, affects the pharmacokinetics of metformin and thus the observed 

variability. In this population, the metformin plasma concentration-time profile 
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does not exhibit a usual form, where a clear Tmax or Cmax is observed. This is 

primarily due to the sparse number of samples per patient, whereas the 

majority of PK studies use a large number of samples (n>3/patient) over a wide 

time period as shown in table 5.1. Unfortunately, the majority of the metformin 

samples acquired per patient were collected within a relatively narrow time-

frame, (see Appendix Figure A5.1). This may reflect why metformin plasma 

levels did not dramatically change within a subject and thus a clear population 

Tmax or Cmax could not be observed. However, we assume patients are at steady-

state in having received metformin for at least 3 months with a mean duration 

of metformin treatment of 8.05 years and no ‘wash-out’ period was employed 

before sample collection. This population are all T2DM patients receiving a 

number of medications for comorbidities associated with T2DM such as 

hypertension and dyslipidaemia. Concomitant medications are well known to 

influence the PK profile of drugs (Ding et al., 2014). This with a number of other 

cofounding factors can affect the PK of metformin, which may influence the 

concentration-time profile of metformin.  

 

A major limitation to the PK modelling reported here is the data itself. Although 

population PK modelling can use sparse data the manner in which the samples 

were collected and trial designed were not desirable for PopPK modelling. 

Traditionally PK modelling is performed in order to plan clinical trials and 

inform which patients to recruit and fundamentally inform and steer how a 

clinical trial is designed, particularly when in sample collection. This trial was 

firstly designed in 2005 when statistical methodology for the field of 

investigating the effect of genetic associations on pharmacokinetics was a 

developing and emerging practise. There was no gold standard or consensus as 

to which was the most effective method. The available methodologies available 

were not sufficient to deal with the nature and biological complexities of genetic 

influences on drug’s PK properties. Therefore, strict guidelines on patient 

recruitment time sampling and trial design were not implemented in order to 

gain the most valuable information that can be acquired from PopPK studies 

using the data. 
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Due to the small sample size and available data, clearance (CL) estimates for 

population and individual parameters were acquired, whereas the population V 

and Ka parameters could only be estimated. The main covariates that reduced 

the OFV for CL, as expected, were all related to kidney function. Surprisingly 

although related to renal function, GFR did not significantly decrease the OFV 

(OFV ∆ = 5.90, P<0.02). As GFR takes into account gender differences, which did 

not significantly reduce the OFV, this may explain why GFR did not significantly 

reduce OFV. 

The results show serum urea levels to be the best descriptor for clearance. In 

comparison to the base model, base + urea decreased the ISV for CL from 52% 

to 39.5%. Therefore, urea, as a covariate, explains 12.5% of the CL variability in 

this population. In comparison, CLCR ISV for CL was 43.8%, therefore explaining 

only 7.18% of the variability. The population base model showed a poor fit to 

the observed data, in contrast to base + urea model. This illustrates why serum 

urea levels are explaining some of the variability observed in the data. 

 

The population PK parameter estimates obtained from modelling for CL, V and 

Ka are comparable to previous results reported in the literature as summarised 

in table 5.1. These studies used similar population demographic characteristics, 

Bardin et al., 2012 used 105 T2DM Caucasian patients and obtained similar 

results with serum creatinine and age being descriptors of metformin CL. 

Conversely, they also reported lean body weight as a significant descriptor 

whereas our study did not find body weight explained the variability in CL. 

Weight in our study was a poor size descriptor because it included a great 

proportion of fat mass, in which metformin is not expected to distribute. 

Therefore, lean body weight should have been a better descriptor, but was 

marginally better than total body weight. 

 

The inclusion of genetic variants as covariates in the modelling, only presented 

one variant as a significant descriptor of metformin CL. The variant, 
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rs113569197, as described in chapter 2, is a TGGTAAGT insertion located across 

a splice donor site SDS in SLC22A1. The variant has previously been associated 

with the presence of metformin-induced gastrointestinal side effects, and found 

to promote a premature stop codon in OCT1 possibly leading to decreased 

transporter expression and thus decreased activity (Grinfeld et al., 2013, 

Tarasova et al., 2012).  

 

As rs113569197 is located in SLC22A1 (OCT1), which is primarily expressed in 

the liver, one would assume the variant would not impact the clearance of 

metformin, in the kidneys. However, variants in SLC22A2 (OCT2) which are 

expressed in the kidney could directly impact and have a greater influence on 

metformin clearance (Leabman et al., 2002).  

 

Conversely, one can hypothesise that individuals with genetic variants reducing 

OCT1 transport function and or expression, could decrease hepatocellular 

uptake, which may lead to greater metformin plasma concentrations and 

increased metformin renal clearance. The literature seems to support the latter 

hypothesis where a relationship between OCT1 reduced-function genotypes and 

metformin renal clearance has been shown (Tzvetkov et al., 2009). Additionally 

Shu et al observed higher metformin AUC and Cmax in subjects who expressed 

reduced-function OCT1 alleles (Shu et al., 2007).    

 

Therefore, the relationship between the rs113569197 variant and predicted 

metformin clearance is biologically plausible. However, further analysis 

between predicted metformin clearance and rs113569197 genotypes revealed 

the reduced-function allele, the TGGTAAGT insertion, was associated with 

decreased metformin clearance, contradicting the hypothesis that reduced-

function alleles in OCT1 lead to increased metformin clearance. Additionally the 

dominant model for rs113569197 did not significantly change the OFV and its 

inclusion in the multivariate model (Table 5.6) did not significantly change the 
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OFV. This collectively suggests the significance of rs113569197 on the OFV is 

most likely an artefact.  

 

Although there are racial differences in the frequency of mutant alleles, no 

exclusion of subjects was made on the basis of their ethnicity. Furthermore, 

since the outcome measures are primarily pharmacokinetic and related to a 

specific set of genotypes, the effect of ethnicity is negligible. Haplotypeanalysis 

based in LD observations did not result in a significant decrease in the OFV. 

We included covariates into the multivariate model knowing they exhibited a 

high correlation, e.g. urea and creatinine (r2 = 0.453), and therefore the 

inclusion of just one parameter in the model would be justified as the decrease 

in OFV may be driven and explained by the inclusion of one parameter. It has 

been demonstrated that the inclusion of covariates exhibiting multi-collinearity 

(r2 >0.5) in NONMEM may reduce the accuracy of the parameter estimates 

themselves and estimates may be inflated due to ill-conditioning (Bonate, 

1999). However, we conducted multi-variate modelling with variates exhibiting 

high collinearity as we had few covariates to implement in the model. The 

univariate model with the biggest decrease in OFV was used as a starting point. 

However, we used two; urea and CLCR.  The latter is regarded as the gold 

standard covariate as a predictor for renal function and is often used in PopPK 

clearance models (Hong et al., 2008, Chae et al., 2012). The British National 

Formulary (Joint Formulary Committee, 2014) states clinicians should use 

metformin with caution with patients displaying a GFR of <30 mL/min. In 

contrary, our results suggest in this population, urea is a greater descriptor of 

metformin clearance over CLCR. 

 

Once a stable and robust PK model has been established, the next stage would 

be to use the PK model for developing a PD model. PD modelling would be used 

to determine any associations between serum vitamin B12 levels and any 

covariates.  
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Two models would be suitable for PD modelling; urea and CLCR. Urea as the best 

descriptor of metformin CL variability and CLCR as it is commonly used as the 

gold standard in PKPD modelling for describing drug clearance variability. The 

two models are summarised below; 

 

θi = TVCL• EXP(ηi)  where, 

 

Urea:      TVCL = θTV • θCOV • (TVCOV - x̄COV) 

CLCR:       TVCL = θTV • (TVCOV/ x̄COV) ^θCOV 

 

Where θi is the estimated parameter value for individual i, θTV is the typical 

value for clearance of an individual with the typical value of the covariate value 

(TVCOV) centred around the mean (x̄COV) and θCOV represents a factor describing 

the influence of the covariate. Initial θCOV values were obtained from 

corresponding regression line equations through plotting the estimated 

parameter values vs the covariate.  

As a part of this work, the original aim was to characterise the relationship 

between the plasma pharmacokinetics of metformin and the levels of vitamin 

B12. Unfortunately, the data is unsuitable for PD modelling. We have one vitamin 

B12 level per patient, post metformin dosage, and therefore are lacking a 

baseline (pre metformin) vitamin B12 level. Vitamin B12 levels do not 

dramatically change over a short period of time the shortest length of 

metformin treatment in this cohort, 3 months, was ample time for vitamin B12 

levels to change (de Jager et al., 2010). Therefore, we could assume the effect 

metformin has on vitamin B12 levels would of reached a plateau. However, 

baseline vitamin B12 level is essential in order to build a robust and stable PKPD 

model to draw to conclusions. Therefore, we could not produce a PKPD model 

using these data. One alternative to this problem is to use baseline vitamin B12 

levels from a T2DM population who are not on metformin therapy. However, 
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this data would be hard to acquire and the two populations would need to be 

similar in other demographic parameters. 

 

In comparison to some published studies as summarised in table 5.1, this study 

reveals several strengths for PopPK modelling. This includes the inclusion of 

T2DM patients rather than healthy controls. Additionally these patients were 

prescribed multiple doses rather than a single dose. Traditionally for well-

controlled PK studies the dose would preferably be uniform throughout the 

population. However, multiple doses are advantageous in PopPK modelling 

where a range of doses and plasma levels can be incorporated into a model to 

reflect a population receiving different doses. Urine samples from the patients 

used in this study would be beneficial to obtain renal metformin clearance data. 

This would clarify the impact of OCTs genetic polymorphisms on metformin 

clearance and disposition. 

In summary, the data from this population was applied successfully to a 

population PK model, which showed urea as the best descriptor for estimated 

metformin clearance. Only one genetic variant in SLC22A1, rs113569197, was 

associated with metformin clearance in the univariate model but dropped out 

the multivariate model. This is therefore most likely to be an artefact. Other 

genetic variants in SLC22A1 and SLC22A2 did not significantly impact metformin 

clearance. Despite producing an acceptable PK model to take forward for PD 

modelling, the data available was not optimal and therefore could not be utilised 

effectively in a PD model to establish a link between metformin and vitamin B12 

levels. Chapter 6 will investigate the association between metformin 

dose/concentration and vitamin B12 levels. 
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6.1 Introduction 

Metformin is generally well-tolerated, with gastrointestinal intolerance being 

the commonest adverse effect. However, a common, potentially damaging and 

well documented complication of metformin therapy is vitamin B12 deficiency 

(Anfossi et al., 2010). This is poorly recognised and not currently screened for 

or treated by the majority of physicians who prescribe metformin. 

Approximately 10-30% of patients with prolonged use of metformin develop 

vitamin B12 deficiency (<200 pmol/L) (de Jager et al., 2010, Ting et al., 2006). 

Vitamin B12 deficiency can cause a megaloblastic anaemia with associated 

symptoms of fatigue, shortness of breath and light-headedness. A more serious 

and irreversible effect of vitamin B12 deficiency is peripheral neuropathy, a 

result of demyelination of axons in the peripheral nervous system. In the central 

nervous system,  vitamin B12 deficiency can cause sub-acute combined 

degeneration of the spinal cord (Bell, 2010). Low serum vitamin B12 levels have 

also been associated with cognitive impairment (Moore et al., 2012) .  This may 

be particularly important in patients with T2DM who have a higher incidence of 

dementia than the general population (Butterfield et al., 2014, Li et al., 2014).  

With the prevalence of vitamin B12 deficiency and T2DM increasing with age 

(Guariguata et al., 2014, Food and Nutrition Board, 1998), it is therefore 

important to characterise vitamin B12 levels in an aging population receiving 

metformin for the treatment of T2DM. 

As data presented in Chapter 1 suggests, metformin dose and treatment 

duration are the most consistent risk factors for vitamin B12 deficiency in 

patients with T2DM (de Jager et al., 2010, Ting et al., 2006). Early studies, which 

used the Schilling test to investigate how metformin causes B12 deficiency 

(Berger et al., 1972, Tomkin, 1973), suggested that it was a result of vitamin B12 

malabsorption. Previous studies have demonstrated that metformin induces a 

positive charge to the surface of the ileal membrane, which would act to 

displace divalent cations such as calcium (Schafer, 1976). Therefore, metformin, 

by impairing calcium availability, interferes with the calcium-dependent 
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process of vitamin B12 absorption.  Although a complementary clinical study 

illustrated that metformin induced vitamin B12 deficiency was reversed by 

dietary supplements of calcium carbonate (Bauman et al., 2000), there are no 

experimental reports to support this hypothesis. Interestingly, metformin’s 

major site of distribution, the liver, stores 50% of the total body content of 

vitamin B12 (Food and Nutrition Board, 1998). Additionally metformin’s 

primary route of elimination, the kidneys, play a role in vitamin B12 homeostasis 

(Birn, 2006). Thus, there is a possibility that systemic effects of metformin may 

also contribute to vitamin B12 deficiency.   

We also studied other parameters related to vitamin B12, such as folate, 

haemoglobin (Hb), haematocrit (HCT) and mean corpuscular volume (MCV). As 

described earlier in section 1.10.2, folate acts as an intermediate in the 

methionine synthase reaction where vitamin B12 deficiency, can trap folate; 

known as the methyl-folate trap (Sauer and Wilmanns, 1977). Additionally 

folate supplementation can mask the underlying vitamin B12 deficiency and its 

clinical consequences (Johnson, 2007). Both folate and vitamin B12 deficiency 

can lead to anaemia. This can be through analysing such haematological 

parameters, such as Hb, HCT and MCV. More specifically macrocytic anaemia, 

characterised by increase in MCV and decrease in Hb and HCT are primarily 

caused by vitamin B12 deficiency rather than iron deficiency (Aaron et al., 2005, 

Fishman et al., 2000). 

This chapter, the relationship between metformin and vitamin B12 is explored. It 

was hypothesised that, if the major mechanism by which metformin induces 

vitamin B12 deficiency is through intestinal malabsorption rather than 

systemically, the dose may be a better predictor than serum metformin 

concentrations. 
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6.2 Materials & Methods 

6.2.1 Study Subjects 

Seventy-five T2DM patients, as described in Chapter 2 were recruited at the 

Royal Liverpool and Broadgreen University hospitals between 2005 and 2007. 

The protocol was reviewed and approved by the NHS Research Ethics 

Committee. Written consent was obtained from all subjects prior to their 

participation in the study.  

6.2.2 Metformin parameters 

Metformin was administered as described in Chapter 2, section 2.2.1.  

6.2.4 Analytic methods 

6.2.4.1 Determination of metformin plasma concentrations 

Metformin was quantified using the HPLC-MS/MS method described earlier in 

chapter 4.  

6.2.4.2 Biochemistry Analytes 

Biochemistry and haematology analytes were quantified at the Royal Liverpool 

University hospital. For vitamin B12 and folate quantification, serum was 

collected into plain tubes for clotting and transported immediately to the 

laboratory. Analysis was performed on an Access 2 immunoassay analyser using 

manufacturer's reagents and protocols (Beckman–Coulter Inc., Fullerton, CA). 

Based on previous literature vitamin B12 deficiency was defined as vitamin B12 

serum levels <150 pmol/L (203 ng/L), with borderline deficiency defined as 

150-220 pmol/L (203-298 ng/L) (Lindenbaum et al., 1990, de Jager et al., 2010). 

Haematology and other biochemistry analytes were collected at the first time 

sample and analysed within 48 hours. References ranges for Hb for male and 

female were 133-167 and 118-148 g/L respectively; HCT were 39-50% and 36-

44% respectively; MCV were 80-100 fL and lactate were 0.5-2.2 mmol/L.  
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6.2.4.3 SLC22A1 & SLC22A2 Gene sequencing 

SLC22A1 and SLC22A2 genes were sequenced as described in chapter 3. In brief, 

primers were designed manually to amplify and sequence all exons, including 

intron-exon boundaries plus up to 2 kb of 5’ sequence to capture variants in 

nearby regulatory elements.  

6.2.5 Statistical analysis 

6.2.5.1 Linear regression 

In order to identify variables associated with vitamin B12 levels linear 

regression analyses were applied using a two-step procedure. Firstly, each 

clinical covariate was tested for a significant association with vitamin B12 in 

univariate analyses. To identify all potential covariates for inclusion in a 

multivariate model, variables with P <0.1 were considered to be sufficiently 

associated with the outcome variables and were retained for further model 

building. Secondly, a stepwise multivariate model was built using the enter 

method. Covariates deemed appropriate based on prior published work and 

biological plausibility with P <0.1 were included in the analyses. Associations 

with P < 0.05 in multivariate analyses were considered significant. The same 

procedures were performed to estimate the impact of covariates influencing Hb, 

HCT, MCV, lactate and metformin plasma concentrations. All calculations were 

performed using SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). Both 

untransformed and transformed (log10) data for metformin plasma levels were 

used and compared for analysis. Transforming the data did not make an impact 

on significance between metformin plasma levels and outcome variables. See 

appendix Table A6.1. 

Non-parameteric Kruskal-Wallis tests were used to further investigate the 

association between grouped metformin daily doses and vitamin B12 levels. 

Grouped metformin daily doses were defined as ≤1000 mg, low; 1500-2000 mg, 

medium and ≥2500, high. Associations between paired categorical variables, 

including vitamin B12 deficiency, metformin daily dose and anaemia status were 

determined with Fisher’s exact test. P < 0.05 was accepted as statistically 
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significant. Additionally grouped variables including comorbidities and 

concomitant drug classes were analysed using non-parametric tests as 

described above. Groups representing >10% of the population were used for 

analysis. Appendix Figure A6.1, and A6.2 display comorbidities and concomitant 

medications prevalence for this patient group. 

6.2.5.2 Analysis of genetic covariates 

SLC22A1 and SLC22A2 genes were sequenced as described in chapter 3. Due to 

the small sample size and additionally low frequency of variants expressed, only 

genetic variants with a MAF of >0.05, (see table 3.2 and 3.3) were included in 

the analysis. Although considered low, a MAF of >0.05 was chosen to increase 

the number of genetic variants in the analysis to determine if rare variants 

exhibit an effect on outcome variables.  

Non-parametric tests were used to investigate associations between genotypes 

and continuous variables. For statistical purposes, genetic variants with three 

genotypes (wild-type, heterozygous and homozygous), were analysed using 

Kruskal-Wallis tests and those with two groups; (wild-type and heterozygous), 

were analysed using Mann-Whitney U tests. However, if one variant had a small 

group number (n≤5), these were included in a dominant model (wild-type vs 

heterozygous + homozygous) and analysed using the Mann-Whitney U tests. 

Probability P values were adjusted using multiple testing corrections in order to 

correct for the occurrence of false-positive results. The Bonferroni correction 

method was used for small numbers of comparisons in which the p value is 

divided by the number of statistical tests performed, (n=3 groups, 0.05/3 = 

0.0167). 

6.2.5.3 Anthropometric estimations 

In addition to body mass index, we explored related anthropometric variables. 

Ideal body weight (IBW) was estimated using the Devine formula (Pai and 

Paloucek, 2000); for males, IBW = 45.4 + 0.089 x (height (cm) – 152.4) + 4.5, for 

females, 45.4 + 0.089 x (height(cm) – 152.4). Lean body weight (LBW) was 

estimated using the following formulae (Hume, 1966); for men, LBW = (0.32810 
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x weight (kg)) + (0.33929 x height (cm)) - 29.5336, for women, LBW =(0.29569 

x weight (kg)) + (0.41813 x height(cm)) - 43.2933. Body surface area (BSA) was 

calculated using the Dubois formula (Du Bois and Du Bois, 1916); surface area= 

weight0.425 x height0.725 x 0.007184, where height is in cm and surface area is in 

m2. 

6.3 Results 

6.3.2 Vitamin B12 concentrations 

Thirty (40%) out of the 75 patients were classified as vitamin B12 deficient, 26 

(34.7%) were borderline deficient and 19 (25.3%) exhibited normal vitamin B12 

levels. Demographic and clinical variables were used in a linear regression 

analysis to estimate serum vitamin B12 levels in T2DM patients. Univariate 

analysis identified that metformin related covariates and anthropometric 

measurements (with the exception of BMI and LBW) were all significantly 

associated with vitamin B12 levels (P<0.05) (Table 6.1). The main predictors 

were metformin dose expressed as either daily dose or mg/kg of body weight 

(P<0.001) (Figure 6.1a,b). The final prediction model accounted for >34% of the 

variance in vitamin B12 levels (R2 =0.345, Adjusted R2 =0.327). Vitamin B12 levels 

were primarily predicted by metformin dose expressed mg/kg of body weight 

and to a lesser extent by serum folate levels. The final regression model to 

estimate vitamin B12 levels was 317.992 + (5.02*serum folate (µg/ml)) – 

(5.20*mg/kg metformin) (p ˂0.001). The R2 value for this equation was higher 

than the R2 value for each individual covariate. Therefore, the combination of 

serum folate levels and metformin mg/kg of body weight produced a more 

reliable prediction of the individual covariates. Results of the multivariate linear 

regression analysis are shown in Table 6.2. 
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Figure 6.1. Associations between serum vitamin B12 levels and metformin parameters  

 

 

 

 

 

 

 

 

 

Serum vitamin B12 levels vs (a) daily dose metformin daily dose mg/kg of body weight; (b) daily dose metformin; and (c) steady-state metformin plasma levels. Normal 
vitamin B12 levels (>298 ng/mL) are defined as values above the top horizontal line, vitamin B12 deficient values (<203 ng/mL) are below the bottom horizontal line. Values 
between the two lines are defined as borderline vitamin B12 deficiency (203-298 ng/mL). 
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Table 6.1. Univariate linear regression analysis.  

 
Dependent variables 

          

 
Vitamin B12 Folate Haemoglobin Haematocrit 

Mean 
Corpuscular 

volume 
Lactate 

metformin plasma 
levels 

 Independent variables R2 P value R2 P value R2 P value R2 P value R2 P value R2 P value R2 P value 

Demography 
              

     Age 0.001 0.772 0.005 0.55 0.095 0.007 0.076 0.016 -0.003 0.631 0.01 0.399 0.091 0.009 

     Height 0.114 0.003 -0.002 0.704 0.029 0.147 0.019 0.24 0.117 0.003 <0.001 0.965 -0.011 0.378 

     Weight 0.058 0.038 -0.008 0.446 0.06 0.034 0.049 0.057 0.101 0.005 0.01 0.406 -0.005 0.541 

     BMI 0.002 0.713 -0.009 0.425 0.034 0.113 0.032 0.127 0.018 0.257 0.013 0.342 <0.0001 0.859 

     IBW 0.107 0.004 -0.003 0.652 0.036 0.101 0.026 0.169 0.109 0.004 <0.0001 0.955 -0.006 0.5 

     LBW 0.043 0.076 -0.002 0.727 0.012 0.346 0.008 0.458 0.09 0.009 0.001 0.745 -0.024 0.18 

     BSA 0.087 0.01 -0.007 0.482 0.057 0.04 0.043 0.073 0.128 0.002 0.004 0.574 -0.009 0.419 

Biochemistry & 
Haematology               

     Vitamin B12 - - 0.041 0.082 0.006 0.494 0.003 0.626 0.018 0.254 -0.043 0.077 -0.042 0.078 

     Folate 0.041 0.082 - - -0.004 0.581 -0.005 0.529 -0.006 0.505 <0.0001 0.99 0.034 0.115 

     Lactate -0.043 0.077 <0.0001 0.99 0.011 0.371 0.018 0.26 <0.001 0.943 - - 0.097 0.007 

     Hb 0.006 0.494 -0.004 0.581 - - 0.978 <0.0005 0.199 <0.0005 0.011 0.371 0.008 0.451 

     HCT 0.003 0.626 -0.005 0.529 0.978 <0.0005 - - 0.168 <0.0005 0.018 0.26 0.003 0.636 

     MCV 0.018 0.254 -0.006 0.505 0.199 <0.0005 0.168 <0.0005 - - <0.001 0.943 -0.016 0.281 

Kidney function 
              

     Creatinine 0.041 0.08 0.005 0.534 -0.032 0.127 0.023 0.193 0.004 0.582 0.028 0.158 0.08 0.014 

     Urea 0.007 0.49 0.036 0.101 0.073 0.019 0.051 0.05 -0.004 0.579 0.017 0.271 0.167 <0.0005 

     CLCR <0.001 0.913 -0.023 0.194 0.152 0.001 0.119 0.002 0.041 0.08 -0.003 0.622 -0.079 0.015 

     GFR -0.012 0.355 -0.021 0.218 0.102 0.005 0.078 0.016 0.004 0.597 -0.008 0.444 0.065 0.027 

Significant values are shown in bold.  
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Table 6.1. (continued) Univariate linear regression analysis.  

 
Dependent variables 

          

 
Vitamin B12 Folate Haemoglobin Haematocrit 

Mean Corpuscular 
volume 

Lactate 
metformin plasma 

levels 

 Independent variables R2 P value R2 P value R2 P value R2 P value R2 P value R2 P value R2 P value 

Liver function               

     Albumin <0.0001 0.961 0.01 0.384 0.235 <0.0005 0.235 <0.0005 0.083 0.012 -0.001 0.781 -0.001 0.845 

     AP <0.0001 0.968 0.002 0.729 -0.015 0.289 -0.013 0.328 -0.046 0.065 0.036 0.104 0.001 0.743 

     GammaGT 0.023 0.196 -0.006 0.519 <0.0001 0.964 -0.001 0.788 0.009 0.413 0.028 0.155 -0.006 0.522 

     ALT <0.0001 0.905 -0.023 0.196 0.089 0.02 0.086 0.011 0.009 0.43 0.023 0.194 -0.003 0.653 

     Bilirubin 0.009 0.413 0.028 0.152 0.003 0.647 0.002 0.682 <0.001 0.946 0.002 0.687 -0.031 0.131 

Metformin variables               

     Daily dose 
-0.224 <0.001 

<0.000
1 

0.954 0.004 0.585 0.005 0.56 0.001 0.823 0.025 0.175 0.18 0.001 

     Trial dose -0.135 0.001 0.004 0.571 0.003 0.638 0.003 0.643 -0.001 0.82 0.021 0.222 0.178 0.001 

     Cumulative dose -0.127 0.002 -0.009 0.413 <0.0001 0.916 <0.0001 0.976 0.002 0.681 0.044 0.073 0.118 0.003 

     Dose (mg/kg) -0.283 <0.001 0.008 0.448 -0.004 0.577 -0.002 0.674 -0.023 0.198 0.016 0.275 0.212 <0.0005 

    Plasma concentration -0.042 0.078 0.034 0.115 0.008 0.451 0.003 0.636 -0.016 0.281 0.097 0.007 - - 

     Length of T2DM -0.003 0.644 -0.03 0.142 -0.049 0.057 -0.037 0.1 -0.004 0.611 0.021 0.213 0.051 0.052 

     Length of treatment -0.079 0.015 -0.01 0.393 <0.0001 0.315 -0.009 0.41 -0.006 0.529 0.034 0.119 0.107 0.004 

Significant values are shown in bold.  
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Increases in grouped metformin doses were negatively associated with vitamin 

B12 concentrations (P<0.001) (Figure 6.2). Additionally there was a significant 

association between low (≤ 1000 mg) and medium (1500-2000 mg) metformin 

doses and vitamin B12 levels (p<0.03) and between low and high (≥ 2550 mg) 

metformin daily doses (P<0.001). Although there was a decrease in vitamin B12 

levels between medium and high metformin doses it was not significant 

(P<0.069). No other associations were observed between grouped metformin 

doses with clinical variables in this study. Furthermore no genetic variants were 

associated with vitamin B12 levels. 

There was a slight negative relationship observed between vitamin B12 levels 

and steady-state metformin plasma concentrations (Figure 6.1c) (R2=0.042), but 

this was not significant (P=0.08). 

 

Figure 6.2. Serum vitamin B12 levels vs grouped metformin doses. 
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6.3.3 Effect on haematological parameters 

Twenty-nine (39%) patients exhibited low haemoglobin (Hb) levels (male <133 

g/L, female <118 g/L) with 30 (40%) having low haematocrit (HCT) levels 

(male <39%, female <36%). As expected Hb and HCT levels were positively 

correlated (R2 = 0.978). Of the 30 patients with vitamin B12 deficiency, 10 

(33.3%) were anaemic (defined as both exhibiting low haemoglobin and 

haematocrit levels). In the 45 patients who exhibited borderline deficiency or 

normal levels, nineteen (42%) patients were anaemic. Overall anaemic patients 

had mean vitamin B12 levels of 252.7 ng/L compared with 226.6 ng/L in 

patients without anaemia (P= 0.4). Metformin daily dose did not influence 

anaemia (P=0.6).  

Serum albumin levels were the biggest predictors of both Hb and HCT levels 

accounting for 23.5% of the variability. The final multivariate model included 

albumin and CLCR as the best predictors for Hb levels. Four (5%) patients 

exhibited high MCV levels (>100 fL) with low Hb and HCT levels indicative of 

macrocytic anaemia. All anthropometric measurements with the exception of 

BMI were positively associated with MCV (P <0.01) with BSA as the greatest 

predictor. The final model included albumin and BSA (R2 = 0.019, P <0.005).  

6.3.4 Serum lactate 

Metformin plasma concentrations were the only predictor for serum lactate 

levels (P = 0.007). 33% of patients exhibited high lactate levels above the 

reference range; exceeding 2.2 mmol/L. The average metformin plasma 

concentrations for patients with lactate levels below and above 2.2 mmol/L 

were 1700 and 2262 ng/mL respectively. 
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Table 6.2. Multivariate linear regression analysis.  

Dependent variable Explanatory variable Model R2  
P/P 

value 
Parameter 

estimate 
SE 

Vitamin B12   0.345 <0.0001 317.99 27.48 
(ng/L) metformin daily dose 

(mg/kg)  
<0.0001 -5.20 0.899 

 
Folate (µg/L)  

0.011 5.02 1.91 

Haemoglobin 
 

0.303 <0.0001 4.14 1.929 

(g/dL) Albumin (g/L)  
<0.0001 0.19 0.048 

 
CLCR  

0.01 0.013 0.005 

Hematocrit  
 

0.281 <0.0001 12.836 5.59 

(%) Albumin (g/L) 
 

<0.0001 0.554 0.14 

 
CLCR  

0.036 0.031 0.014 

Mean Corpuscular Volume 
 

0.202 <0.0005 59.20 7.162 

(fL) Albumin (g/L)  
0.012 0.366 0.142 

 
Body surface area (m2) 

 
0.002 6.89 2.103 

Steady state metformin  
plasma concentration 

0.495 <0.0001 -1023.97 357.99 

(ng/mL) metformin daily dose 
(mg/kg)  

<0.0001 53.42 8.10 

 
Urea (mmol/L)  

<0.0001 238.26 37.50 

 

6.3.5 Genetic variants 

Genetic variants did not have a significant effect on metformin plasma levels, 

vitamin B12, serum lactate, haemoglobin or haematocrit levels, Table 6.3. Several 

genetic variants in both SLC22A1 (rs12208357, rs683369) and SLC22A2 

(rs3127573, rs34129302, rs2774230, rs2279463, rs3127594) were associated 

with serum folate levels, with the minor allele being associated with decreased 

serum folate levels.  

Two variants were associated with MCV; rs202220802 in SLC22A1 and 

rs624249 in SLC22A2. Paradoxically, the minor allele of rs202220802 was 

associated with decreased MCV whereas rs624249 was associated with 

increased MCV. However, after correction for multiple testing, only 

rs202220802 remained significantly associated with MCV. 

Two variants, all expressed in SLC22A2, were associated with variables related 

with kidney function. The rs316003 and rs3127594 minor allele variants were 

initially associated with increased CLCR.  Additionally, rs31275944, was   
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Table 6.3. SLC22A1 & SLC22A2 effect on outcome variables 

 Genetic 
variant 

Vitamin 
B12 

Folate Hb HCT MCV Lactate Urea Creatinine CLCR GFR 
Metformin 
plasma 
levels 

SL
C

2
2

A
1

 (
O

C
T

1
) 

rs12208357 0.791 0.024 0.729 0.683 0.348 0.814 0.391 0.458 0.559 0.605 0.913 

rs683369 0.171 0.015 0.609 0.617 0.392 0.866 0.502 0.983 0.710 0.799 0.395 

rs45584532 0.453 0.663 0.816 0.954 0.894 0.279 0.701 0.259 0.376 0.872 0.907 

rs628031 0.298 0.547 0.268 0.299 0.423 0.813 0.369 0.606 0.904 0.838 0.261 

rs202220802 0.869 0.609 0.893 0.970 0.036 0.365 0.638 0.803 0.330 0.557 0.223 

rs113569197 0.291 0.825 0.386 0.552 0.214 0.364 0.089 0.125 0.545 0.535 0.213 

rs9457843 0.447 0.260 0.976 0.829 0.839 0.309 0.806 0.202 0.375 0.950 0.429 

rs622591 0.105 0.983 0.663 0.910 0.082 0.564 0.828 0.296 0.389 0.489 0.110 

SL
C

2
2

A
2

 (
O

C
T

2
) 

rs3127573 0.306 0.007 0.487 0.369 0.657 0.764 0.367 0.089 0.218 0.183 0.124 

rs316023 0.321 0.089 0.230 0.184 0.790 0.599 0.615 0.136 0.472 0.099 0.224 

rs34129302 0.426 0.005 0.618 0.535 0.862 0.782 0.341 0.111 0.129 0.133 0.099 

rs624249 0.440 0.504 0.829 0.672 0.024 0.964 0.771 0.237 0.110 0.053 0.549 

rs2774230 0.422 0.034 0.558 0.437 0.496 0.617 0.674 0.137 0.072 0.143 0.338 

rs316019 0.933 0.533 0.922 0.737 0.450 0.442 0.624 0.726 0.229 0.363 0.900 

rs2279463 0.280 0.003 0.577 0.621 0.739 0.935 0.243 0.087 0.081 0.095 0.550 

rs316003 0.613 0.077 0.576 0.513 0.907 0.339 0.527 0.119 0.041 0.071 0.166 

rs3127594 0.494 0.004 0.931 0.918 0.462 0.721 0.248 0.053 0.049 0.042 0.210 

rs694812 0.786 0.473 0.556 0.526 0.578 0.343 0.703 0.786 0.179 0.250 0.386 

Number displayed correspond to P value from non-parametric analysis. Significant P values (p<0.05)  are shown is bold. All genetic 
variants were analysed with Mann-Whitney U test unless marked with a which corresponds with Kruskall-Wallis (n=3 groups). Hb, 
haemoglobin; HCT, haematocrit; MCV, mean Corpuscular volume; CLCR, creatinine clearance; GFR, glomerular filtration rate.  
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Table 6.4. Comorbidities and Concomitant drug classes  effect on outcome variables 
 

Vitamin B12 Folate Hb HCT MCV Lactate Urea Creatinine CLCR GFR 
Metformin 

plasma levels 

Comorbidity            

    Dyslipidemia 0.422 0.140 0.909 0.790 0.573 0.832 0.327 0.130 0.311 0.739 0.714 

    Ischaemic heart disease 0.681 0.438 0.615 0.701 0.905 0.373 0.063 0.203 0.361 0.287 0.283 

    Osteoarthritis 0.337 0.910 0.994 0.902 0.366 0.708 0.068 0.488 0.573 0.917 0.418 

    Neuropathy & Retinopathy 0.828 0.281 0.140 0.140 0.894 0.648 0.756 0.524 0.706 0.762 0.889 

Concomitant medication            

    Atenolol 0.659 0.583 0.628 0.568 0.994 0.418 0.970 0.795 0.085 0.102 0.534 

    Aspirin 0.894 0.766 0.318 0.448 0.844 0.711 0.623 0.636 0.510 0.466 0.941 

    Anti-diabetic drugs 0.179 0.120 0.247 0.247 0.176 0.739 0.057 0.077 0.185 0.285 0.351 

    PPIs 0.760 0.448 0.256 0.191 0.492 0.124 0.371 0.795 0.452 0.770 0.775 

    OCT inhibitors 0.121 0.652 0.166 0.116 0.969 0.188 0.116 0.382 0.316 0.771 0.576 

Number displayed correspond to P value from non-parametric analysis. There are no significant P values (p<0.05) . All grouped variables were analysed with Mann-Whitney 
U test. Hb, haemoglobin; HCT, haematocrit; MCV, mean Corpuscular volume; CLCR, creatinine clearance; GFR, glomerular filtration rate;PPIs, Proton-pump inhibitors. 
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associated with increased eGFR. However, after correction for multiple testing, 

none of these associations with kidney function remained significant. 

6.3.6 Comorbidities & Concomitant drug classes 

There was no significant association of grouped comorbidities on the outcome 

variables, Table 6.4. Additionally grouped concomitant drug classes were 

investigated. Known OCT inhibitors included the PPIs (lanzoprazole and 

omeprazole), quinine, rantidine and atenolol. Grouped additional anti-diabetic 

drug medications included gliclazide, rosiglitazone, pioglitazone and 

glimepiride. There was no significant effect concomitant drug classes had on the 

outcome variables. See appendix Figures A6.1 and A6.2 for summary of all 

comorbidities and concomitant medications. 

 

6.4 Discussion 

In this chapter we observed a prevalence of vitamin B12 deficiency in metformin 

treated T2DM patients of 40%, which is greater than other recent reported 

prevalence’s ranging from 14-28.1% (Beulens et al., 2014, de Groot-Kamphuis et 

al., 2013). The differences may be accountable for the duration of metformin 

treatment which is higher in our study (8.05 years) compared with their mean 

duration ranged from 4-5.3. 

 The negative relationship between metformin and vitamin B12 has been widely 

reported in a number of populations (Tal et al., 2010, Ting et al., 2006, de Groot-

Kamphuis et al., 2013) and a recent meta-analysis showed metformin had a 

significant effect on vitamin B12 concentrations in a dose-dependent manner in 

comparison to other interventions (mean difference, 253.93 pmol/L; 95% CI, 

281.44 to 226.42 pmol/L, P=0.0001) (Liu et al., 2014). See Chapter 1, section 

Our study lacked a placebo group for comparative analysis, but due to the 

lethora of evidence showing metformin induces vitamin B12 deficiency we feel , 

Table 1.4 for previous studies on metformin and vitamin B12 levels. This is not a 



Chapter 6 

188 

 

limitation.To our knowledge, this is the first study to illustrate that the effect of 

metformin on vitamin B12 deficiency in T2DM is driven by metformin dose and 

not systemic exposure. This suggests metformin induces malabsorption of 

vitamin B12 at the intestinal level.  

Metformin’s major route of absorption is not through cellular transport but 

through tight junctions of ileal cells (Proctor et al., 2008). Furthermore 

metformin is absorbed by cells through the apical membrane but not 

transported through the basolateral membrane resulting in metformin being 

sequestered in the cells leading to high cellular concentrations.  Previous 

reports have suggested, but not provided evidence, that the metformin 

transporter SLC22A1 (OCT1) is expressed in the basolateral membrane of 

enterocytes and thus aids in the cellular transport of metformin from the cell to 

the blood (Mulgaonkar et al., 2013). In contrary Han et al., 2013, discovered that 

OCT1 was not expressed on the basolateral membrane of human and mouse 

enterocytes and inhibition of the transporter did not influence basolateral 

transport of known OCT1 substrates. Together these data collectively suggest 

that metformin is transported in enterocytes through the apical membrane only. 

This is also supported by studies demonstrating OCT3 and Plasma membrane 

monoamine transporter (PMAT) are apically expressed enterocyte metformin 

transporters (Zhou et al., 2007a, Muller et al., 2005).  

Under normal conditions vitamin B12 is bound to intrinsic factor (IF) in the 

duodenum. The vitamin B12-IF complex is recognised by the multi-ligand 

apically expressed membrane protein, Cubam, which endocytoses the complex 

into the epithelium of the terminal ileum (Fyfe et al., 2004, He et al., 2005). 

Following Cubam internalisation the IF-Cbl complex is sorted through 

lysosomes (Fyfe et al., 2004), degrading the IF allowing free B12 to be trafficked 

to and transported out of the basolateral membrane through transcobalamin 

receptor II into the bloodstream (Seetharam, 1999). As metformin is prescribed 

in large doses, commonly 3000 mg/day, enterocyte accumulation of metformin 

may be high. This may induce enterocyte dysfunction through cellular glucose 

depletion and directly or indirectly impacting on intracellular trafficking of 
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vitamin B12 from the apical to the basolateral membrane and transfer into the 

blood contributing to vitamin B12 malabsorption. Interestingly the most 

common side effect of metformin is gastrointestinal irritability (Bolen et al., 

2007) and although not reported, may be linked to vitamin B12 deficiency. 

The univariate analysis revealed several anthropometric measurements, 

including height, weight, LBW, and IBW, to be positively associated with vitamin 

B12 levels (P< 0.05). Anthropometric measurements are known predictors of 

liver weight and size (Chan et al., 2006, Deland and North, 1968). Given that 

50% of the body’s total vitamin B12 store is located in the liver, these 

measurements may mirror the size of the liver and thus its vitamin B12 storage 

capacity. Increased liver size may slow down the progression of vitamin B12 

deficiency in metformin treated T2DM patients. Although both male and female 

groups in our study showed a significant association between metformin dose 

and vitamin B12 levels, it was more pronounced in females (males; P<0.05, 

females; P>0.0001) which may reflect the differences in anthropometric 

measurements and therefore liver size. There was no significant difference in 

observed metformin daily dose and treatment duration between male and 

female subjects. Our data shows that no SLC22A2 or SLC22A2 variants were 

associated with vitamin B12 levels.  

Interestingly, two variants in SLC22A1 and five variants in SLC22A2 showed an 

association with serum folate level, with the minor allele being associated with 

decreased folate levels. Upon first observation it appears that a number of SNPs 

are independently associated with folate, however as the linkage disequilibrium 

plot in chapter 3 illustrates (Figure 3.4), these SNPs are in high LD with one 

another.. Additionally, the SNPs in SLC22A1 (rs12208357, p.R61C; rs683369, 

p.L160F)   associated with folate levels exhibit LD (>0.6) with rs34129302 

(p.GAA/-) in SLC22A2. Additionally this variant has a smaller P value than the 

other variants associated with folate levels. Therefore it is likely that 

rs34129302 represents the casual variant associated with decreased folate 

levels. There is no available evidence to support this OCT1-folate relationship 

which suggests this is an artefact. However, both folate and vitamin B12 
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deficiency can arise from the induction of a functional folate deficiency, which in 

turn is induced by vitamin B12 deficiency. The interrelationship between these 

two vitamins has been explained by the methyl trap hypothesis (see Chapter 1, 

section 1.10.2) which states that vitamin B12 deficiency can lead to lowered 

levels of methionine synthase, which results in folate deficiency by trapping an 

increased proportion of folate as the 5-methyl derivative. If our data is under 

powered to find a significant association between vitamin B12 levels and OCT1 

variants we may of found an association with folate levels through the 

interrelationship vitamin B12 and folate have in the folate trap. However, we 

found no significant relationship between vitamin B12 and folate levels in our 

population again suggesting the OCT1-folate association is an artefact. 

 

All metformin parameters were negatively associated with vitamin B12 levels. 

The final regression model revealed metformin dose (mg/kg) and folate levels 

to be the greatest explanatory variables for vitamin B12 levels in T2DM patients 

(P <0.0005). Patients with a slightly lower folate level and higher metformin 

dose were more likely to have diminished vitamin B12 levels.  The mean 

duration of metformin treatment in this study was 8.05 years and was 

negatively associated with vitamin B12 levels (P=0.015, R2=0.08). The rate of 

vitamin B12 depletion from the body stores is reliant on the efficiency of 

absorption, the initial amount stored, re-absorption from the bile and clearance 

through the kidney. It has been estimated that a normal person’s body store of 

1-3 mg would be sufficient to meet the body’s needs for 3-6 years, respectively 

under normal conditions (Allen, 2008). Consequently malabsorption of vitamin 

B12 driven by metformin may not be apparent for years of following treatment 

due to the large internal vitamin B12 store. This may reflect why systemic levels 

of metformin were not associated with vitamin B12. Our study lacks baseline 

vitamin B12 levels, quantifying one measurement per patient; however, given 

the lengthy time scale needed for B12 deficiency to present itself versus the 

lengthy mean duration of metformin treatment in this study; we believe the 

sample timings are sufficient to draw conclusions of metformin’s effect on 
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serum vitamin B12 levels. The final linear regression model explains 34% of 

vitamin B12 variability observed in this patient group. The remaining variability 

could be explained by other covariates not incorporated in our study. 

Interestingly, vitamin B12 is absorbed in the small intestine, stored in the liver 

and levels regulated by the kidneys (Birn, 2006); sites of metformin transporter 

expression and high metformin disposition (Chen et al., 2013). Apically 

expressed enterocyte metformin transporters SLC22A3 (OCT3) and SLC29A4 

(PMAT) are known metformin transporters and their genetic variants have been 

investigated to elucidate their effects on metformin pharmacokinetics 

(Christensen et al., 2011). Although they report no effects of these polymorphic 

variants on metformin pharmacokinetics, given their site of expression, further 

work to investigate the effect of polymorphic variants in these transporters on 

serum vitamin B12 levels may be useful.  

The importance of vitamin B12 in haematopoiesis is well known, and can be 

linked to a number of clinical haematological manifestations including anaemia 

(Fishman et al., 2000). Therefore we investigated if vitamin B12 levels influenced 

reductions in Hb and HCT levels and increases in MCV. We found neither 

vitamin B12 levels nor any metformin parameters were associated with decrease 

in Hb levels. Even though it is not widely reported, there have been reports 

indicating metformin does slightly decrease haemoglobin and haematocrit 

levels (Belcher et al., 2005, Bray et al., 2012).  However, despite metformin dose 

decreasing vitamin B12 levels, it did not affect anaemic status in our cohort. 

Furthermore, there was no significant difference in vitamin B12 levels in patients 

with or without anaemia, 252.7 vs 226.6 ng/L respectively. We may not have 

observed a vitamin B12-anaemia relationship as we exclusively used serum 

vitamin B12 as a marker. Others have suggested holotranscobalamin and 

methymalonic acid as more sensitive biomarkers for anaemia, as they reflect B12 

status and B12 internal stores more specifically than vitamin B12 alone 

(Chatthanawaree, 2011, Oberley and Yang, 2013). Our results mirror that of de 

Groot-Kamphuis et al., 2013 who observed that metformin dose decreases 

vitamin B12 levels but does not lead to anaemia or in T2DM patients (de Groot-

Kamphuis et al., 2013). The most likely explanation therefore is that studies to 
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date have lacked power to show the association between metformin and 

megaloblastic anaemia despite the association with decreased vitamin B12 

levels.  Such a study would have to be done in patients who have been taking 

metformin for more than a decade which may prove difficult by conventional 

means, but may become possible as electronic health records become more 

widely available. 

We did not observe any clinically relevant haematological consequences of 

vitamin B12 deficiency in our cohort. However there is documented evidence 

demonstrating low vitamin B12 levels or B12 deficiency to be associated with 

neurodegenerative diseases and cognitive impairment with vitamin B12 therapy 

improving cognitive function (Moore et al., 2012, Aaron et al., 2005). Conversely 

several contradictory reviews observed no association between serum vitamin 

B12 levels and cognitive function but found specific methylmalonic acid, 

homocysteine and holotranscobalamin to be associated with dementia and 

decline in cognitive function (O'Leary et al., 2012, Health Quality, 2013, de Jager, 

2014), again highlighting that serum vitamin B12 levels may not reflect true B12 

status.  

Factors significantly related to haemoglobin and haematocrit levels in this study 

were age, albumin, ALT, urea, CLCR and GFR (P<0.005). This is consistent with 

previous reports which observed relationships between haemoglobin with 

albumin (Feng et al., 2011, Madore et al., 1997, Eliana et al., 2005), creatinine 

(Feng et al., 2011) and age (Madore et al., 1997, Feng et al., 2011, Carpenter et 

al., 1992). Our multivariate model revealed both albumin and CLCR were the best 

explanatory variables for Hb and HCT. Albumin and Hb levels are known to 

increase in dehydrated patients. Furthermore, Feng et al., 2011 suggested 

diminished albumin levels are a result of poor nutrition which may reflect 

haemoglobin levels.  

Metformin plasma levels were quantified in 218 plasma samples from 75 T2DM 

patients. The concentrations ranged from 49 to 4908 ng/mL with an average of 

1879 ng/mL. This equates to a 100-fold difference observed in metformin 
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plasma concentrations between patients receiving 0.5-3 g of a day. This finding 

is consistent with Christensen et al who report an 80 fold variability when using 

a single dose of 2.0 g/day (Christensen et al., 2011).  

The biggest predictor for metformin plasma levels was metformin dose (mg/kg 

body weight) followed by serum urea levels. Serum urea was positively 

correlated with serum creatinine and negatively correlated with CLCR and GFR, 

all of which were statistically significantly associated with metformin plasma 

levels. This complements our PopPK results in chapter 5 where serum urea 

levels were the biggest explanatory variable for predicted metformin clearance; 

which is directly related to metformin plasma levels. Metformin is primarily 

eliminated from the body through the kidneys (Robert et al., 2003). Our results 

show that decreased kidney function is associated with increased metformin 

plasma concentration due to decreased metformin elimination from the body 

therefore. This reflects the importance of metformin use in T2DM with kidney 

disease with current guidelines not recommending its use in patients with a 

GFR of <30 mL/min and use with caution with <60 mL/min (Lipska et al., 2011). 

Metformin plasma concentrations were the only predictor for serum lactate 

levels (P = 0.007). Metformin’s primary pharmacological site of action is the 

liver where metformin acts to inhibit hepatic gluconeogenesis (Wiernsperger 

and Bailey, 1999). This inhibition not only decreases serum glucose levels but 

diminishes lactate hepatocyte uptake thus increasing serum lactate levels. Lactic 

acidosis, although a rare side effect, is a recognised adverse reaction of 

increased metformin levels (Graham et al., 2011).  

Two variants, in SLC22A2 were initially significantly associated with kidney 

function, though this was negated by correction for multiple testing. 

Interestingly, genome-wide association studies reported SLC22A2 variants to be 

associated with serum creatinine (Koettgen et al., 2009). However, they report 

rs2279463 is associated with creatinine production whereas we found this 

variant had no association with CLCR. Additionally, another study has found the 

minor allele rs316003 to be associated with increased GFR which complements 
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our initial finding of rs316003 being weakly related to increased CLCR 

(Reznichenko et al., 2013). 

Several conclusions can be drawn from this chapter. First, there is a clear 

association between metformin dose and serum vitamin B12 levels. On the 

contrary steady-state metformin plasma levels were not significantly associated 

with vitamin B12 levels. This suggests metformin exerts its effect at the intestinal 

level inducing vitamin B12 malabsorption. Consequently the data may shed some 

light on the mechanism responsible for metformin induced B12 deficiency which 

is currently unclear. The study did not identify any association between 

SLC22A1 or SLC22A2 genetic variants and vitamin B12 deficiency. The inclusion 

of genetic variants in metformin drug transporters expressed in the gut, such as 

PMAT or OCT3, may provide a mechanism to how metformin induces vitamin 

B12 deficiency. Finally vitamin B12 deficiency does not influence any clinical 

hematological manifestations where either more specific biomarkers of B12 

status such as holotranscobalamin and methymalonic acid need to be employed 

and this needs to be accompanied by much larger sample sizes.    
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Despite metformin being used for decades and being the most commonly 

prescribed anti-diabetic medication in the world today, there is a considerable 

amount unknown about how it leads to vitamin B12 deficiency. OCT1 (SLC22A1) 

and OCT2 (SLC22A2) are highly polymorphic drug transporters responsible for 

the hepatic and renal uptake of metformin, respectively (Kimura et al., 2005a, 

Mulgaonkar et al., 2013). We therefore investigated the effect of genetic variants 

in these genes on metformin parameters and vitamin B12 levels. 

In chapter 4, we developed a HPLC-MS/MS method for the quantification of 

metformin in human plasma. We found the average intra-individual metformin 

plasma concentrations (steady-state) ranged from 49 to 4908 ng/mL with an 

average of 1879 ng/mL. We hypothesised this high variability between 

individuals on similar metformin doses could possibly be explained by genetic 

polymorphisms in SLC22A1 and SLC22A2.  

Due to the polymorphic nature of OCT genes, we decided to sequence rather 

than genotype patients for specific known variants. In chapter 6, we showed 

decreased serum vitamin B12 concentrations are driven more by metformin 

dose suggesting that metformin causes vitamin B12 deficiency as a result of local 

action in the gut rather than systemically. Therefore, retrospectively we should 

have considered sequencing other known metformin transporters, particularly 

those that are expressed in the intestine, such as OCT3 and PMAT (Duan and 

Wang, 2010, Duong et al., 2013). Christensen et al (Christensen et al., 2011) 

found a cluster of five intronic SNPs in PMAT associated with decreased 

metformin absorption. These SNPs were barely significantly associated with 

trough steady-state metformin concentration, and correction for multiple 

testing meant they were no longer significant. Conversely Duong et al., 2013  

found no SNPs in PMAT or OCT3 that were significant covariates in metformin 

clearance or volume of distribution. Chen et al., 2015 observed lower metformin 

bioavailability in knockout OCT3 mice compared with wild-type mice. Other 

groups have also shown that genetic variants in OCT3 may modulate metformin 

action (Chen et al., 2010a). Therefore further work is warranted and needed to 

define the role of OCT3 and PMAT on metformin-induced vitamin B12 deficiency.  
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The majority of the clinical studies demonstrating that the administration of 

metformin leads to vitamin B12 deficiency refer to the work of Schafer (Schafer, 

1976) as an explanation for the mechanism behind the association. These 

reports collectively suggest that the binding of biguanides causes a positive shift 

to the surface of the ileal membrane, which would displace divalent cations such 

as calcium. This would then interfere with the calcium-dependent process of 

vitamin B12 absorption. However the work focused on phenformin and 

buformin using murine liver and kidney mitochondrial membranes, and not the 

effect of metformin on the plasma membrane of ileal cells. Therefore these 

assumptions cannot be validated based on the work of Schafer (1976). The only 

evidence to support the theory that metformin impairs calcium availability is 

from a clinical study which illustrated that metformin induced vitamin B12 

deficiency was reversed with dietary supplements of calcium carbonate 

(Bauman et al., 2000). They suggested that the hydrophobic tail of metformin 

could extend into the hydrocarbon core of membranes, thereby displacing 

divalent cations and leading to vitamin B12 malabsorption. However, our results 

in chapter 4 suggest that metformin’s high polarity would prevent metformin 

from interacting with the plasma membranes hydrophobic core from 

phospholipid tails. We found that reverse phase HPLC columns, which have a 

non-polar, hydrophobic stationary phase, were poor at retaining metformin, 

due to its high polarity. Additionally the incorporation of a hydrophilic 

interaction liquid chromatography (HILIC) column showed that a hydrophilic 

stationary phase was more than adequate at retaining metformin. Schafer’s 

work used phenformin and buformin, which are compounds with exhibit 

greater hydrophobicity compared with metformin. Phenformin and buformin 

are larger compounds which have a benzene and hydrophobic hydrocarbon tail 

(Figure 1.1). Thus, we conclude this chemical and biological theory is not 

plausible based on our results.  

A plausible molecular explanation may be as follows:  the absorption of vitamin 

B12 is dependent on binding to Intrinsic factor (IF) produced by parietal cells in 

the stomach. This vitamin B12-IF complex is recognised by the multi ligand 

apical membrane protein, cubam, which endocytoses the complex into the 
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epithelium of the terminal ileum (Fyfe et al., 2004, He et al., 2005). Cubam is 

composed of the extracellular protein cubilin and the transmembrane protein 

amnionless (Andersen et al., 2010). Cubilin contributes to the recognition and 

binding of the vitamin B12-IF complex. More specifically the CUB5-8 domains of 

cubilin bind with high affinity to the vitamin B12-IF complex in a Ca2+dependent 

manner (Andersen et al., 2010). Therefore, metformin could induce a positive 

charge on the membranes of the ileum epithelium, displacing the Ca2+ from the 

CUB domains and preventing vitamin B12-IF complex binding to cubam receptor 

for absorption, Figure 7.1.  However, additional work is required to investigate 

this hypothesis. What is evident is that metformin causes vitamin B12 

malabsorption (Mollin et al., 1957, Tomkin, 1973, Callaghan and Hadden, 1980, 

Mourits-Andersen and Ditzel, 1983, Shaw et al., 1993, Andres et al., 2003).  

Metformin is prescribed in large doses; consistent with this, we observed high 

metformin plasma concentrations (average steady-state, 1879 ng/mL; chapter 

4). Therefore we could hypothesise that enterocyte accumulation of metformin 

in the GI tract may be high. This may induce enterocyte dysfunction through 

cellular glucose depletion which may either directly or indirectly impact on the 

intracellular trafficking of vitamin B12 from the apical to the basolateral 

membrane and transfer into the blood leading to vitamin B12 malabsorption. 

The receptor-mediated endocytosis of vitamin B12 from the intestinal lumen and 

subsequent translocation across the cell is a complex and energy dependent 

process (He et al., 2005, Fyfe et al., 2004). Given metformin induces cellular ATP 

depletion possibly through mitochondrial dysfunction, this could result in 

decreased vitamin B12 absorption (Sanchez-Alvarez et al., 2013). AMPK agonists, 

such as metformin, can act as stress-energy inducers. This characteristic of 

metformin has led to its use alongside anti-cancer treatments to promote severe 

oxygen and glucose deprivation in certain areas of tumour tissues (Sanchez-

Alvarez et al., 2013, Menendez et al., 2012, Evans et al., 2005). Figure 7.1 

provides a summary of possible sites where metformin could impact on the 

absorption of vitamin B12.  
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Figure 7.1. Proposed hypotheses to metformin induced vitamin B12 malabsorprtion. Under normal 
conditions vitamin B12 bound to intrinsic factor in the intestine. Upon binding to the cubam 
receptor the complex, it is internalised and the IF is degraded allowing free vitamin B12 to be 
transported to the basolateral membrane. It has been previously hypothesised that metformin 
sequesters in enterocytes as there is no known basolateral metformin drug transporters. 
Metformin may undergo transport via tight junctions using proteins called claudins. We 
hypothesise that the increased concentration of metformin in the enterocyte cytoplasm may 
accumilate in enterocytes and impair vitamin B12 translocation from the intestinal lumen to the 
blood. The T-bars show possible sites where metformin may interact or bind to reduce vitamin 
B12 absorption or how it leads to depleted cellular energy required for vitamin B12 translocation. 
AP, apical; BL:basolateral. 
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The most common side effect of metformin is gastrointestinal irritability (Bolen 

et al., 2007). Tarasova et al., 2012, described a 8 bp insertion, rs36056065, 

which may predispose toward an increased prevalence of GI side effects of 

metformin. As discovered in chapter 2, the GTAAGTTG insertion is in fact the 

rs113569197 TGGTAAGT variant (refer to Figure 2.5). The possible effect of the 

8 bp insertion on OCT1 expression levels has previously been determined by 

Grinfeld et al., 2013, who found that the 8 bp insertion was included in the 

transcript, prompting a new spicing donor site. Both this study and our analysis 

in chapter 2 predicted that the 8 bp insertion would produce a premature stop 

codon resulting in a truncated OCT1 protein.  Thus one could hypothesise that 

the 8 bp insertion may lead to metformin induced gastrointestinal side effects 

through the lack of OCT1 protein expression or reduced level of function from a 

truncated OCT1 transcript. 

In chapter 6 we found no association between serum vitamin B12 levels and 

rs113569197 in OCT1. Additionally we found no association with other OCT1 or 

OCT2 genetic variants and outcome variables. However, the rs113569197 8 bp 

insertion described in chapter 5 was found to be initially associated with 

predicted metformin clearance in our PopPK model. But this association was 

dropped when multivariate analysis was performed and serum urea levels were 

found to be the major explanatory variable of metformin clearance. One 

possible limitation of our cohort is the low study sample size which may not 

have sufficient statistical power to detect associations between genetic variants 

and vitamin B12 levels. 

A more specific measure of metformin clearance would have involved collecting 

urine samples from the patients, which we could have applied our HPLC-MS 

method descried in chapter 4. The quantification of metformin from urine has 

previously been done using HILIC (Nielsen et al., 2014). More crucially, we may 

have been able to use the genetic variant data from OCT2, as it is expressed in 

the kidney, to determine whether there is an association between metformin 

clearance and OCT variants. OCT2 has been previously described as the rate 

limiting step in metformin clearance. Furthermore, OCT2 genetic variants have 
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been linked to impaired metformin elimination (Christensen et al., 2013, Duong 

et al., 2013, Aoki et al., 2008, Zolk, 2012). Christensen et al., 2013  also reported 

that the OCT2 rs316019 variant (p.A270S) increased the renal elimination of 

metformin. However, other metformin drug transporters are expressed in the 

kidney, MATE1 and MATE2K (Nies et al., 2011b, Chen et al., 2013, He et al., 

2010), and again, their genetic variants have been suggested to impact on 

metformin clearance. Thus, there is a need to simultaneously consider the effect 

of several different transporters on metformin clearance – this would need a 

much larger sample size. 

In our population, the metformin plasma concentration-time profile does not 

exhibit a usual PK curve, where clear Tmax or Cmax parameter values can be 

obtained. A major limitation to the PK modelling reported here is the data itself. 

Due to the small sample size and available data, clearance (CL) estimates for 

population and individual parameters were acquired, whereas the population V 

and Ka parameters could only be estimated. Usually the next step after 

producing a PK model is to use it in building and producing a PD model. 

Unfortunately, our data is unsuitable for PD modelling as we have one vitamin 

B12 level per patient, post metformin dosage, and therefore are lacking a 

baseline (pre metformin) vitamin B12 level.  

This study only used serum vitamin B12 levels as a marker for vitamin B12 

deficiency. However, there is no precise or gold standard test for the diagnosis 

of vitamin B12 deficiency. The diagnosis is usually based on identifying a low 

level of serum vitamin B12 with clinical evidence of deficiency, such as anaemia 

(Wong, 2015). However we found no association between vitamin B12 levels and 

Hb or anaemia in this cohort. The quantification of other markers of vitamin B12 

deficiency such as those described in Chapter 1, section 1.10.5, might of 

provided better evidence for polymorphic metformin drug transporters as 

predictors of metformin-induced vitamin B12 deficiency. For example, both the 

short term and long-term effects of metformin on homocysteine levels have 

been assessed in T2DM. Following 16 weeks of metformin treatment (850 

mg/tds) Wulffele et al (2003) observed a modest, but significant 4% increase in 

homocysteine levels (Wulffele et al., 2003). Using the same treatment dose De 



Discussion 

202 

 

Jager et al., 2010 found metformin decreased both vitamin B12 and increased 

homocysteine levels after 4 years treatment duration. Additionally Carlsen et al., 

1997 found that greater than 6 months exposure of metformin decreased 

vitamin B12 and increased serum homocysteine and MMA, which led to clinically 

severe peripheral neuropathy compared with similar patients with no 

metformin exposure (Carlsen et al., 1997). However, there is an unresolved 

issue to whether increases in  homocysteine is secondary to reduced vitamin B12 

or a combination of both (Buysschaert et al., 2000, Hoogeveen et al., 1997). 

Nethertheless other markers of vitmain B12 deficiency may have been beneficial 

in this small sample cohort. 

To gain an understanding to the effects of genetic variants in OCTs we used in 

silico structural modelling techniques to create OCT protein structures. These 

techniques are routinely and successfully used to screen large databases and 

identify possible transporter ligands through docking experiments and for 

enabling rational drug design. However, we wanted to use these to predict 

whether an nsSNP can elucidate whether it impacts transporter function. The 

3D models were solely based on the TMDs of OCT as the templates used did not 

have the large extracellular or intracellular loops. However, the major substrate 

specificity site of most membrane transporters is the TMDs (Friedman et al., 

1999, Ito et al., 2001). We showed the models were structural accurate using the 

validation procedures used and through using the helical wheel analysis. The 

models were therefore useful in assessing how amino acid changing variants 

influence the substrate binding cleft. We did, however, find discrepancies 

between our in silico predictive system to that observed in vitro (Leabman et al, 

2002, Nies et al., 2011). One major limitation of our models that may answer 

this is the protein structures were in one conformation, whereas biologically 

these transporters change shape conformationally in order to transport 

substrates. Despite this the structural models provided an illustrative insight 

into what the genetic variants may do to the protein structure. 

The patients in this cohort were receiving metformin for more than 3 months. 

This was to ensure patients had steady-state metformin plasma levels. However, 

some patients may not have been able to tolerate metformin for that length of 



Discussion 

203 

 

time and thus were not included in the cohort. It is known that GI intolerance  

leads to premature discontinuation of therapy in 4% of cases (Tarasova et al., 

2012, Scheen, 1996, Bray et al., 2012, Haupt et al., 1991). Additionally, as 

discussed earlier, GI side effects were shown by Tarasova et al (Tarasova et al., 

2012) to be associated with the rs113569197 variant. Our cross-sectional 

analysis therefore does not represent a true representation of a T2DM patient 

population on metformin as some participants who were likely to have stopped 

metformin were not included.  Thus a prospective cohort study is required. 

PMAT and OCT3 are known metformin transporters located on the apical 

membrane of ileal cells, which are responsible for metformin uptake into the 

cell (Han et al., 2015, Proctor et al., 2008). However, with regards to the 

basolateral membrane, there is conflicting evidence concerning the expression 

of drug transporters enterocyte basolateral membranes (Han et al., 2015, 

Mulgaonkar et al., 2013).  The only reported metformin drug transporter 

located on ileal cell basolateral membranes is OCT1. Previous reports have 

suggested, but not provided evidence, that OCT1 is expressed on the basolateral 

membrane of enterocytes and thus aids the cellular transport of metformin 

from the cell to the blood (Mulgaonkar et al., 2013, Muller et al., 2005, Martel et 

al., 2001). However, Muller et al., 2005 observed strong OCT3 expression 

whereas they found weak expression of OCT1 on basolateral Caco-2 cell 

membranes. The Caco-2 cell line is derived from human epithelial adenoma cells 

which resemble small intestine polarised enterocytes. As Caco-2 cells are of 

tumorous origin, certain proteins might be over or under expressed compared 

to normal tissue. Therefore the use of primary human intestinal cells will be of 

greater use.  Furthermore, OCT1 immunolabelling was observed mainly in the 

cytoplasm and to a lesser extent on the basolateral membrane, while OCT3 was 

strongly expressed at the apical membrane, in contrast to studies showing 

enterocyte basolateral OCT1 expression.  Han et al., 2013 discovered OCT1 was 

not expressed on the basolateral membrane of human and mouse enterocytes 

and inhibition of the transporter did not influence basolateral transport of 

known OCT1 substrates. In summary, there is conflicting evidence to the 

expression of OCT1 in enterocytes, but the literature is suggesting that the 
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expression is minimal. Therefore the major drug transporters that may play a 

vital role in metformin absorption are most probably PMAT and OCT3.  

 

An in vitro model system to characterise the effect of metformin-induced 

vitamin B12 malabsorption may be beneficial. Such an intestinal cell line would 

require over expression of the vitamin B12 receptor, Cubam, GI metformin drug 

transporters, OCT3 and PMAT and their amino acid variants. As described by 

Proctor et al., 2008, a trans-well assay using a primary human intestinal cells, 

rather than the Caco-2 cell line, could be constructed to provide insight to 

whether metformin may impair or inhibit vitamin B12 absorption, translocation, 

or deplete energy status of the cells. Genetic variants in GI metformin drug 

transporters could then be included to determine their impact. Determining 

vitamin B12 levels can be achieved using enzyme-linked immunosorbent assay 

ELISA or radiolabelled vitamin B12 using the commonly used isotope 57Co.  

 

To summarise, this project has not found any association between OCT1 and 

OCT2 polymorphisms and vitamin B12 deficiency. We have, however, observed 

that metformin induced vitamin B12 deficiency is dose dependent, suggesting it 

exerts this adverse effect at the site of the intestine, leading to vitamin B12 

malabsorption. This observation complements those results and hypotheses 

from the literature, suggest that metformin could accumulate in the GI tract and 

lead to malabsorption. A number of questions however remain to be answered 

in order to fully understand the molecular mechanistic explanation of 

metformin-induced vitamin B12 deficiency. Future research efforts aimed at 

defining the mechanism of vitamin B12 malabsorption would provide insight 

into the complex mode of action of metformin (in terms of both efficacy and 

safety) which is still not clear despite its widespread use. 
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Figure A2.1.Testing of SLC22A1 and SLC22A2 primers on reference DNA.  
Primers were designed to sequence all exons, including intron-exon boundaries plus up to 2 kb of 5’UTR sequence to capture variants in nearby regulatory elements 
Product sizes ranged from 254 to 747 bp in length. Ladder inset shows molecular weights of DNA markers.
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Figure A2.2 Gender determination for the T2DM patient cohort.   
The amelogenin gene in the X chromosome expresses a 6 bp deletion in intron 1 relative to the Y 
chromosome. Gel electrophoresis resolves two bands (112 and 106 bp) for male gDNA whereas one 
is resolved for female gDNA  
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Figure A2.3. Consensus sequences for intronic splice sites. 
The figure displays the nucleotide sequences required for alternative splicing. The blue boxes depict the ends of exons. Bases in red illustrate nucleotides that are almost 
invariant in eukaryotes. Other nucleotides represent the major nucleotides found at this site. SDS, splice donor site; SAS, splice acceptor site. 
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Appendix A2.4. Hardy-Weinberg analysis 
Frequencies from our study, left, were compared with those available on the International HapMap project, right (release #28, Aug 2010). Allele frequencies for thirteen 
SNPs were available from the HapMap database for comparing MAF frequencies, including SLC22A1 (rs683369, rs34134157, rs2282143, rs628031, rs622591) and SLC22A2 
(rs3127592, rs694812, rs3103353, rs316003, rs8177515, rs2279463, rs316019, rs624249). The comparison showed there were no significant deviations from Hardy-
Weinberg equilibrium either in the metformin group or the HapMap data (Chi-squared test (Χ

2
) P>0.05). 
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Figure A3.1. Helical Wheel plots for OCT1 
TMDS are assumed to take the conformation of a standard α-helix (3.6 residues/helical turn) = angle of 100

o
 in regards to their neighbouring residues. For example TMD 8 

shows that the helices has a hydrophobic face opposite a hydrophilic polar face. The blue arrows show the predicted direction of the binding cleft where polar and/or 
charged residues interact with substrate binding. Red arrows show show the predicted direction of the binding cleft but not conforming to a hydrophilic and hydrophobic 
face. For TMD 12 the α-helices is composed of mainly hydrophobic residues and therefore predicted not to contribute to the binding cleft and substrate recognition. All 
TMDs apart from TMD 11 correlated with helical wheel analysis suggesting TMDs are correctly aligned. 
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Figure A3.2. Helical Wheel plots for OCT2 
The blue arrows show the predicted direction of the binding cleft where polar and/or charged residues interact with substrate binding. For TMDs 3 and 12 the α-helices is 
composed of mainly hydrophobic residues and therefore predicted not to contribute to the binding cleft and substrate recognition. All TMDs correlated with helical wheel 
analysis suggesting TMDs are correctly aligned. 
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Figure A4.1 Breakdown products of metformin and phenformin. 
Breakdown products of the analytes with predicted structures. Metformin parent peak at m/z 130.0 
and phenformin at m/z 206.0. Chemical structures were drawn using ChemBioDraw Ultra. 
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Figure A5.1. Plasma sampling times.  

Time post metformin dose ordered in mean time sampling post dose. Metformin Tmax ranges are reported from 1-3 hours (blue shaded box) with an average of 2.5 hours. 
The majority of samples were obtained within this range (42%), thereby capturing Tmax values. 



Appendix 

214 

 

Table A5.1. Multicollinearity between covariates.  
 
 

 

 

 

 

 

 

 

 

 

 

All covariate pairs exhibited high multicollinearity with the exception age vs creatinine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Covariates r2 correlation coefficient 

Urea vs CLCR 0.378 

Urea vs creatinine 0.453 

Urea vs age 0.1873 

CLCR vs creatinine 0.2813 

CLCR vs age 0.449 

Age vs creatinine 0.089 
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Appendix 5.3 NONMEM Control File for base model 

$PROBLEM S_METFORMIN study 

$DATA METFORMIN_2012.CSV IGNORE=C 

$INPUT C ID TIME AMT EVID ADDL II SS CMT DV MDV 

$SUBROUTINE ADVAN2 TRANS2 

$PK 

    BSVCL = ETA(1) 

    BSVV  = ETA(2) 

    BSVKA = ETA(3) 

    CL = THETA(1)*EXP(BSVCL) 

    V =  THETA(2)*EXP(BSVV) 

    KA = THETA(3)*EXP(BSVKA) 

    S2 = V/1000 

 $ERROR 

    IPRED = F 

    Y=F+F*ERR(1)+ERR(2) 

$THETA 

    (55)   ;CL 

    (550)  ;V 

    (0.51 FIX)  ;KA 

$OMEGA 

       0.16    ;BSVCL 

       0 FIX    ;BSVV 

0 FIX  ;BSVKA 

$SIGMA 

0.09   ;PROP 

        100    ;ADD 

$ESTIMATION MAXEVAL=9999 SIGDIGITS=3 POSTHOC NOABORT METHOD=COND INTER 

$COVARIANCE = E 

$TABLE ID TIME CL V CMT EVID ADDL II SS CMT DV MDV IPRED CWRES NPDE=PDERR BSVCL 
BSVV NOPRINT FILE=MET.fit ONEHEADER ESAMPLE=1000 SEED=1233344 

 

 
 

 

 

 



Appendix 

216 

 

Appendix 5.4 NONMEM  Control File for urea model 

$PROBLEM S_METFORMIN study 

$DATA METFORMIN_2012.CSV IGNORE=C 

$INPUT C ID TIME AMT EVID ADDL II SS CMT DV MDV UREA 

$SUBROUTINE ADVAN2 TRANS2 

$PK 

    BSVCL = ETA(1) 

    BSVV  = ETA(2) 

    BSVKA = ETA(3) 

    TVCL= THETA(1)*((UREA/6.4)**THETA(4)) 

    CL = TVCL*EXP(BSVCL) 

    V  = THETA(2)*EXP(BSVV) 

    KA = THETA(3)*EXP(BSVKA) 

    S2 = V/1000 

$ERROR 

    IPRED = F 

    Y=F+F*ERR(1)+ERR(2) 

$THETA 

    (59.44) ;CL  

    (550)   ;V 

    (0.5)   ;KA 

    (-0.006);UREA  

$OMEGA 

       0.16   ;BSVCL 

       0 FIX  ;BSVV 

       0 FIX  ;BSVKA 

 $SIGMA 

        0.09   ;PROP 

        100    ;ADD 

$ESTIMATION MAXEVAL=9999 SIGDIGITS=3 POSTHOC NOABORT METHOD=COND INTER 

$COVARIANCE PRINT=E 

$TABLE ID TIME CL V KA CMT EVID ADDL II SS CMT DV MDV UREA IPRED CWRES NPDE=PDERR BSVCL 
BSVV NOPRINT FILE=MET40.fit ONEHEADER ESAMPLE=1000 SEED=1233344 
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Table A6.1. Data transformation of metformin plasma levels; comparison of P values 
for linear regression analysis 
 

Demography Untransformed Log Transformed 

     Age 0.009 0.014 

     Height 0.378 0.635 

     Weight 0.541 0.847 

     BMI 0.859 0.97 

     IBW 0.5 0.701 

     LBW 0.18 0.615 

     BSA 0.419 0.721 

Biochemistry & Haematology 
 

      Vitamin B12 0.078 0.093 

     Folate 0.115 0.165 

     Lactate 0.007 0.011 

     Hb 0.451 0.292 

     HCT 0.636 0.405 

     MCV 0.281 0.517 

Kidney function 
 

      Creatinine 0.014 0.013 

     Urea <0.0005 0.001 

     CLCR 0.015 0.049 

     GFR 0.027 0.054 

Liver function 

       Albumin 0.845 0.896 

     AP 0.743 0.566 

     GammaGT 0.522 0.81 

     ALT 0.653 0.958 

     Bilirubin 0.131 0.074 

Metformin variables 
 

      Daily dose 0.001 <0.0005 

     Trial dose 0.001 <0.0005 

     Cumulative dose 0.003 0.003 

     Dose (mg/kg) <0.0005 <0.0005 

    Plasma concentration - - 

     Length of T2DM 0.052 0.087 

     Length of treatment 0.004 0.007 
Significant values are shown in bold.  
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Figure A6.1. Comorbidity prevalence’s in the patient group. 
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 Figure A6.2. Concomitant drug class prevalence in the patient cohort
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