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ABSTRACT: Multiple sclerosis (MS) and its animal model, experimental allergic
encephalomyelitis (EAE), are autoimmune disorders resulting in demyelination
in the central nervous system (CNS). Pathologically, the blood-brain barrier
becomes damaged, macrophages and T cells enter into the CNS, oligodendro-
cytes and myelin are destroyed, astrocytes and microglia undergo gliosis, and
axons become transected. Data from several biochemical and pharmacological
studies indicate that free radicals participate in the pathogenesis of EAE, and
iron has been implicated as the catalyst leading to their formation. The primary
focus of this article is the examination of the role of iron in the pathogenesis of
MS and EAE. Particular attention will be paid to the role and distribution of
iron and proteins involved with iron metabolism (e.g., transferrin, ferritin,
heme oxygenase-1, etc.) in normal and disease states of myelin. Furthermore,
therapeutic interventions aimed at iron, iron-binding proteins, and substrates
or products of iron-catalyzed reactions leading to free radical production will
be discussed.
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INTRODUCTION

In humans, lipids represent ~33% of the dry weight of gray matter, ~55% of the
dry weight of white matter, and ~70% of the dry weight of myelin.! The oligo-
dendrocyte is responsible for producing massive quantities of lipids that become
incorporated into the multilamellar structure of myelin, and each oligodendrocyte
can produce up to 50 or more myelin segments. This “lipid factory” requires sufficient
enzymatic machinery for the biosynthetic steps required for this high level of lipid
production, and many of these enzymes utilize iron as part of their catalytic center.
It has been suggested that the high concentration of iron observed within the oligo-
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dendrocyte is due to an elevated expression of enzymes involved with myelin
production, although other explanations have been put forth, such as the oligo-
dendrocyte being a center for iron distribution to the rest of the central nervous system
(CNS). In addition to partaking in normal physiological processes within oligo-
dendrocytes, the high levels of iron have been suggested to promote pathogenesis
during disease states such as multiple sclerosis (MS) and its animal model, experi-
mental allergic encephalomyelitis (EAE), due to the ability of iron to catalyze reac-
tions that lead to oxidative tissue damage. The function of high levels of iron within
oligodendrocytes in healthy states and the role of iron in demyelinating diseases of
the CNS are the focus of this paper.

IRON, TRANSFERRIN, AND FERRITIN IN
OLIGODENDROCYTES AND MYELIN

A large number of studies have examined the distribution of iron in the CNS by
histochemical staining procedures. The Perls’ histochemical stain has been used in
many investigations, especially in combination with 3,3’-diaminobenzidine enhance-
ment of the ferric ferrocyanide reaction product.? Other modifications include the
utilization of permeabilization steps to increase the penetration of histochemical
reagents into densely myelinated areas>* and changes in fixatives and/or incubation
times.> A consensus among many studies is that iron is enriched within oligodendro-
cytes and myelin.>*0-12 Electron microscopic studies revealed iron deposits in the
cytoplasm of oligodendrocytes!! and within the inner and outer loops of myelin,®
and it is possible that compact myelin also contains appreciable amounts of iron. In
addition to iron histochemical staining, substantial concentrations of iron also have
been detected by atomic absorption in myelin fractions of brain homogenates.!3

The role that high levels of iron perform within oligodendrocytes is not fully
established. The high concentration of iron in oligodendrocytes has been suggested
to be associated with biosynthetic enzymes that are involved with the high metabolic
demands of myelinogenesis.?-1# However, phylogenetic studies revealed that oligo-
dendrocytes in the fish and frog did not have high iron levels as detected by histo-
chemistry, !’ suggesting that high iron levels are not essential for the formation and/or
maintenance of myelin. On the other hand, iron deficiency during early postnatal life
causes a reduction in myelination, %17 indicating that the oligodendrocyte is sensitive
to low iron levels. An alternate suggestion was that, in species with iron-enriched
oligodendrocytes, the iron serves as a storage depot to be tapped for delivery of iron
to other cells in the CNS. In support of this idea is the observation that oligodendro-
cytes synthesize transferrin,!218-20 and this transferrin may deliver iron to other
cells in the CN'S.2! In one study, cultured oligodendrocytes were shown to synthesize
and secrete transferrin,?2 but this was not confirmed in a follow-up study.23 Thus, it
is uncertain whether iron delivery by oligodendrocyte transferrin contributes signif-
icantly to the transport of iron in the CNS. Oligodendrocyte transferrin also has been
suggested to serve in an autocrine capacity to help oligodendrocytes accumulate
iron.2* However, transferrin receptors are absent or present in low abundance in
white matter,2>-2% and mechanisms to sequester iron other than involving transferrin
can be used by glial cells.2” Transferrin has been shown to serve as a growth factor2®
and it was found to be important for the maturation and function of oligodendro-
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cytes, 2931 suggesting that the receptor may be present in oligodendrocyte progenitors.

However, the role of transferrin as a growth factor would not account for the large
accumulation of iron that is observed within oligodendrocytes.

Unlike transferrin receptors, ferritin receptors are present in high concentrations
in white matter,32-33 and cultured oligodendrocytes bind and internalize ferritin.3*
Furthermore, due to the large binding capacity of ferritin for iron, there is the poten-
tial for a greater delivery of iron by ferritin than transferrin.32 In addition to binding
ferritin, oligodendrocytes express ferritin.!2:35-37 There are two subunits of ferritin,
heavy (H) and light (L), and both subunits are expressed by oligodendrocytes.38-41
Neurons, microglia, and astrocytes also express ferritin similar to oligodendro-
cytes, 2042 yet these cells are not routinely stained by iron histochemistry, suggesting
that the large accumulation of iron observed in oligodendrocytes is not necessarily
due solely to the presence of ferritin. Moreover, immunohistochemical staining of
ferritin or transferrin fails to reveal staining of myelin. This is in contrast to findings
with iron histochemistry where myelin staining has been clearly documented.?*6-12
Thus, it is likely that there is no one protein that accounts for the large majority of
iron binding in oligodendrocytes. Transferrin, ferritin, and iron-containing enzymes
involved with myelinogenesis probably all contribute to sites of iron localization
within oligodendrocytes. The proteins that bind iron within myelin are less clear.
However, iron enrichment within both oligodendrocytes and myelin raises the
possibility that an imbalance in the management of iron during disease could lead to
the production of iron-catalyzed free radicals that result in oxidative damage.

IRON, FERRITIN, AND TRANSFERRIN IN EAE AND MS

Histochemical staining of iron in CNS tissue from SJL mice with EAE revealed
iron deposits that were not present in the CNS of normal animals. For example, during
clinically active disease, there was histochemical staining of iron within macrophages
and extravasated RBCs, and granular staining was present in extracellular sites and
possibly within some astrocytes.*> During the recovery phase of disease, staining
persisted in macrophages and granular deposits.*? In tissue from MS patients, an
initial report by Craelius ez al.** revealed abnormal iron deposits in 5 out of 5 MS
patients, but these findings were not fully confirmed in two subsequent studies.*>+%6
These three studies on MS tissue did not include any steps to enhance the permeability
of the tissue to the histochemical reagents, and they were carried out on paraffin sec-
tions where the processing steps could facilitate the leaching of iron from the tissue.
When Vibratome sections were utilized together with permeabilization steps, iron
deposits were observed in macrophages in tissue from 5 out of 5 MS patients, and
labeled reactive microglia and ameboid macrophages were observed in 3 out of 5
tissues.*” In tissue from 1 MS patient, labeling of axons was present.*” Craclius et al.
also noted axonal staining in their report.** It is possible that the axonal staining
revealed axons that were recently transected since axonal transection is a predominant
pathological feature of MS.#8-51 In addition to labeled axons, punctate iron deposits
were observed within some neurons of patients with MS similar to that observed for
neurons in CNS tissue from patients affected with Alzheimer’s disease.’ These
deposits within neurons likely represent cells undergoing degeneration since neuronal
loss is also a pathological feature of MS.52 In addition to neurons, punctate deposits
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were observed within some oligodendrocytes in MS tissue.*’” Mitochondria are
possible sites of these punctate deposits within oligodendrocytes and neurons since
two proinflammatory cytokines found in MS, TNF-a and IL-1§, have been shown to
lead to the accumulation of iron within mitochondria in astrocyte cultures.>3

During stress, such as hypoxia, oligodendrocytes increase their synthesis of
ferritin,>*> and ferritin levels are increased in the CNS of EAE animals compared
to control animals.’® Ferritin levels, but not transferrin or iron levels,>”->8 were
found to be significantly elevated within the CSF of MS patients with chronic pro-
gressive active disease, but not relapsing remitting disease, compared to levels in the
CSF of control patients.>® In other conditions, the upregulation of ferritin expression
is thought to be associated with the protection of cells against oxidative damage® 62
and/or the inhibition of cell-mediated immunity.93-¢7 Cell-mediated immunity, that
is, T cells and macrophages, is the major contributor to pathology in EAE and MS.
Thus, the elevated levels of ferritin in EAE and MS may be a protective mechanism
to limit the toxic effects of iron during ongoing pathogenesis.

In MS tissue, there is an absence of ferritin binding sites in and adjacent to lesion
sites, which is likely due to the loss of oligodendrocytes in this disease, while in the
normal brain there is a relatively high concentration of ferritin receptors in white
matter compared to gray matter.>3 Unlike ferritin, transferrin can bind to periplaque
regions and to occasional plaques in MS tissue,3? indicating that the receptors
accounting for transferrin binding were present in cells other than oligodendrocytes.

Natural resistance—associated macrophage protein-1 (Nrampl) modulates iron
metabolism in macrophages and is thought to play an important role in macrophage
activation.®® Since the macrophage is critical for the pathogenic development of
EAE and MS, Nramp1 has been suggested to be involved with CNS demyelinating
diseases. Although far from proven, an allele of this gene has been suggested to be
associated with MS susceptibility in South African Caucasians®® and alleles in this
gene might influence the susceptibility and/or severity of other autoimmune diseases
such as rheumatoid arthritis.”®7! Thus, the management of iron in the CNS may be
a precipitating factor for the onset and/or progression of MS.

FREE RADICAL DAMAGE TO OLIGODENDROCYTES/MYELIN

The abnormal iron deposits observed in EAE and MS tissues indicate that the
normal homeostasis of iron is disrupted, and iron is likely released from the proteins
that it normally binds. Released iron will quickly bind to neighboring molecules, and
iron that is loosely bound, or in a free state, can catalyze reactions that lead to the
production of reactive oxygen intermediates (ROI). ROI can promote cellular damage
at many levels, for example, proteins, DNA, lipids, mitochondrial function, etc. Data
from a variety of studies indicate that oxidative tissue damage occurs in EAE and
MS. For example, lipid peroxidation products were observed in EAE and MS
tissue,’>73 the production rates of ROI from inflammatory cells were increased from
EAE mice compared to control mice,’*7> and pharmacological interventions aimed
at disrupting oxidative damage have therapeutic value in EAE and possibly MS
(discussed below).

During EAE or MS, cells in the CNS respond to inflammation by inducing the
expression of stress response proteins.’®77 One stress response protein related to
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iron metabolism is heme oxygenase-1 (HO-1). HO-1 expression can be induced by
many factors including heme, metals, glutathione depletion, nitric oxide, cytokines,
etc., and several of these stressors are present in EAE and MS. For example,
abnormal iron deposits are present in EAE and MS tissues,*3*7 glutathione deple-
tion occurs in EAE and MS,%6-78:79 nitric oxide and its products are increased in
EAE and MS,8%-81 and proinflammatory cytokines are enhanced in MS 8283

HO-1 acts in association with NADPH cytochrome P450 reductase, which provides
reducing equivalents, to convert heme into biliverdin, carbon monoxide, and iron.
The various products of HO-1 activity have pro- or antioxidative properties.®* For
example, biliverdin and bilirubin (which is rapidly generated from biliverdin by
biliverdin reductase) are both antioxidants. The released iron is a pro-oxidant if it is
not properly sequestered. Cells protect themselves from the toxic effects of iron by
responding to an increased iron load by downregulating the transferrin receptor®?
and by upregulating ferritin expression.®%-87 Lower levels of transferrin receptor will
restrict the entry of additional iron into the cell, while the increased expression of
ferritin will bind and store the released iron. Iron-responsive proteins (IRPs) bind
iron-responsive elements on ferritin mRNA, preventing its translation.36-87 When
IRPs sense an increase in cytosolic iron levels, they allow ferritin mRNA to undergo
translation, which results in the sequestering of iron by ferritin. Disruption of this
regulation can lead to an enhanced accumulation of iron and ubiquitin-containing
inclusions within oligodendrocytes.®® Furthermore, mice deficient in H-ferritin have
increased evidence of oxidative stress in their CNS.8 Thus, a coordinated response
is required to limit the potential toxic effects of iron that is liberated by HO-1.

HO-1 expression has been observed to be increased in EAE?%°! and MS>3 tissues,
and immunohistochemical studies revealed that HO-1 was expressed predominantly
by macrophages and some astrocytes in EAE tissue?®°! and in astrocytes in MS
tissue.>> The administration of the HO-1 inhibitor, tin-protoporphyrin IX, to EAE
mice resulted in the enhanced induction of HO-1 levels above the levels already
increased by the EAE disease.® HO-1 induction was not observed in control animals
given tin-protoporphyrin IX, suggesting that the breakdown of the blood-brain barrier
that occurs in EAE?%93 accounts for the greater access of drugs to the CNS in EAE
animals compared to control animals,”* and this would allow tin-protoporphyrin IX
to induce the expression of HO-1 in CNS cells, similar to what has been observed in
the liver.” Tin-protoporphyrin IX appeared to enhance the expression of HO-1 in
astrocytes and microglia since these cells were only occasionally observed in EAE
animals given vehicle, but they were observed more frequently in EAE animals
given tin-protoporphyrin IX (F1Gs. 1A—C). In addition to greater expression in astro-
cytes and microglia, induction was also enhanced in radial glia (F16. 1D) and possible
other cells as well. Besides inducing HO-1 expression, tin-protoporphyrin IX is
known to inhibit HO-1 activity, especially at higher doses (discussed below).

During EAE, the oligodendrocyte is exposed to stress due to the inflammatory
response directed at its antigens. However, HO-1 staining was not evident in this cell
even after the administration of tin-protoporphyrin IX to EAE animals. Even though
HO-1 staining was not clearly observed within oligodendrocytes, all cells need to
metabolize heme. Thus, oligodendrocytes should have the capacity to express one or
more types of HO, which could facilitate the deposition of iron in ferritin, whose
expression is elevated in this cell type33 4! and whose levels increase in the CNS
during EAE.3® The inability to detect HO-1 staining in oligodendrocytes during
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FIGURE 1. HO-1 immunohistochemical staining on formalin-fixed, paraffin sections
utilizing 1:6000 rabbit anti-mouse HO-1 (StressGen Biotechnologies, Victoria, British
Columbia, Canada), horseradish peroxidase—labeled goat anti-rabbit IgG, and 3,3’-diamino-
benzidine. The frequency of labeling in (A) reactive microglia, (B) ameboid microglia, (C)
astrocytes (arrowheads), and (D) radial glia appeared greater in EAE SJL mice given 50
umol/kg (C, D) or 200 umol/kg (A, B) tin-protoporphyrin IX than EAE mice given vehicle,
suggesting that tin-protoporphyrin IX could induce HO-1 expression in the CNS of EAE
animals. Labeled infiltrating, round macrophages were abundant in EAE animals given
vehicle or tin-protoporphyrin IX (not shown). Bar: 20 um.



258 ANNALS NEW YORK ACADEMY OF SCIENCES

disease could be due to several factors. For example, the levels of expression could
be well below that for other cells, such as macrophages, which would make it
difficult to optimize staining conditions that clearly reveal staining in both cell types.
Alternatively, a different form of HO than HO-1, for example, HO-2, could be
expressed by oligodendrocytes or the expression of HO-1 could last only minutes or
hours and thus missed in a disease lasting several days for EAE and many years for
MS patients.

As HO-1 expression increases during disease, the overall expression of NADPH
cytochrome P450 reductase expression decreases in EAE tissue.”? The reduction of
NADPH cytochrome P450 reductase would appear to be inconsistent with the
increase of HO-1 in the CNS of EAE animals; however, this enzyme is also used by
other enzymes such as the cytochrome P450s. The activity of a cytochrome P450
was found to be reduced in the CNS of EAE animals,”® which would parallel the
reduction of NADPH cytochrome P450 reductase,’® and other cytochrome P450s also
may be reduced. Furthermore, the reduction in NADPH cytochrome P450 reductase
levels is consistent with its pattern of expression in other models of stress.?”-%8 Thus,
while NADPH cytochrome P450 reductase is likely associating with HO-1 during
EAE, on balance its levels throughout the brain are reduced during disease.

THERAPEUTIC APPROACHES TARGETING PATHOGENIC
MECHANISM INVOLVING IRON

Various therapeutic interventions targeting iron, iron management, or iron-
catalyzed free radicals have been explored for the treatment of EAE and MS. The
most direct approach has been the utilization of iron chelation therapy. In 1984,
Bowern et al.® administered the iron chelator, Desferal (also known as desferri-
oxamine and deferoxamine), to Lewis rats given guinea pig spinal cord homogenates
as the encephalitogen. Both the duration and severity of disease were reduced in the
treated groups. In a subsequent study, Desferal failed to reduce disease severity in
Lewis rats given myelin basic protein (MBP) as the encephalitogen, but the drug was
administered only from days 1-7 postencephalitogen injection, while disease onset
was day 11.190 In an effort to clarify the discrepancy between these two studies, a
third study was performed on SIL mice given MBP as the encephalitogen.* Desferal
was given during the clinical stage of disease rather than the preclinical period as
was the case in the second negative study.!%0 Treatment with Desferal resulted in
disease suppression in this third study, and immunohistochemical staining of Desferal
revealed its presence in the CNS of EAE animals.”* Administration of Desferal
during the active stages of experimental uveitis was also found to suppress lipid
peroxidation in the retina.!%! Thus, taken together, these data support the notion that
Desferal acts to suppress the active stage of disease by limiting iron-catalyzed free
radical tissue damage.

Due to the ability to inhibit free radical tissue injury, Desferal was tested for
therapeutic value in three studies on MS patients. In the first study, 12 MS patients
were given 2 g/day for 5 days/week for 3 months.!02 At the end of the study, 7 of the
12 patients showed improvement, 4 patients were unchanged, and 1 was worse. The
second study gave Desferal at 2 g/day for 7 days followed by 1 g/day for an addi-
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tional 7 days. At 3 months following treatment, 9/18 patients showed improvement,
7/18 were unchanged, and 2/18 showed worsening; however, as time progressed, the
patients displayed a trend to have a worsening of disease.!?® In the third study,
Desferal was given at 2 g/day for 7 days followed by 1 g/day for an additional 7 days
and this was repeated every 3 months for 2 years. Out of 9 patients, 1 showed
improvement, 3 were unchanged, and 5 worsened by 0.5 points on the Kurtzke
expanded disability status scale.!%* Taken together, the results are inconclusive
about whether Desferal has therapeutic value for the treatment of MS, and a larger,
double-blind trial needs to be performed to resolve this question. Although the
patients appeared to tolerate Desferal reasonably well, a serious drawback is that this
drug is usually administered by a subcutaneous pump over several hours, which is a
difficult and cumbersome method for drug administration. A more promising
approach may be the administration of an iron chelator that can be given by an oral
route when a suitable one becomes available.

Although there is debate as to whether HO-1 serves a protective or pathogenic
role during disease,®%105 interventions aimed at HO-1 have been pursued for the
treatment of EAE. Hemin (40 umol/kg), an inducer of HO-1 expression, was found
to ameliorate EAE in Lewis rats, while tin-mesoporphyrin (40 pmol/kg), an inhibitor
of HO-1, was found to worsen disease.!%® The authors suggest that HO-1 suppresses
disease by the production of biliverdin, which is converted to bilirubin, and/or carbon
monoxide.!% Bilirubin serves as an antioxidant,33:197:108 while carbon monoxide is
thought to be an anti-inflammatory agent.!% In a follow-up study, bilirubin was
administered (50, 100, 200 mg/kg) to Lewis rats during the active stage of EAE and
it was found to suppress disease in a dose-dependent manner.!'9 However, caution
should be exercised with respect to advancing this form of therapy for a chronic con-
dition like MS since high levels of bilirubin can adversely affect the nervous system.

A second study examined the role of HO-1 in EAE.%® In this study, the SJL mouse
model was used together with the HO-1 inhibitor, tin-protoporphyrin IX (50 and 200
umol/kg). The high dose of inhibitor was found to suppress clinical and pathological
evidence of disease, and oxidative stress was reduced.’® In the SJL model, there is
extravasation of RBCs into the CN'S during disease,*3-!1! and the release of iron from
heme by HO-1 has been suggested to account for the pathogenic effects of HO-1 in
this model, which may be similar to pathogenic mechanisms of HO-1 in stroke,!!?
traumatic brain injury,!!3 and cerebral ischemia.!l* Thus, the different results
between studies on Lewis rats and SJL mice may be due to variations in pathological
features between these models or the different doses of inhibitors. Since pathological
studies indicate variations of pathological mechanisms in MS, !5 and extravasation
of RBCs has been suggested in some MS patients,*0:116 it is unclear whether HO-1
serves to advance or attenuate pathology during the course of this disease.

The propathogenic mechanism of HO-1 in SJL mice with EAE was suggested to
be related to a large release of iron from heme and a failure of ferritin to adequately
sequester the iron in a timely and/or complete manner.>® Thus, to test this possibility,
apoferritin was administered to SJL mice with EAE. Apoferritin was found to
suppress disease activity in EAE mice, while injections of iron, which increased serum
ferritin levels, failed to ameliorate the disease course.!!” It was suggested that the
ferritin synthesized in response to iron injections quickly acquired the injected iron and
lost some or most of its therapeutic potential since ferritin loaded with iron can release
iron, especially when exposed to superoxide anion radical or nitric oxide.!!8:119 The



260 ANNALS NEW YORK ACADEMY OF SCIENCES

therapeutic action of apoferritin was suggested to be due to the sequestering of the
exogenous iron that occurs in this disease,*3 and this mechanism would be similar to
that suggested for Desferal described above.

Other therapies aimed at reducing the substrates or products of iron-catalyzed
reactions leading to ROI have been tested in EAE. The administration of catalase,
but not superoxide dismutase, to Lewis rats with EAE resulted in the suppression of
disease activity.”> High doses of uric acid, a scavenger of peroxynitrate, which is
produced from superoxide anion radical and nitric oxide, resulted in suppression of
disease in PLSJL mice.'?0 Scavengers of oxygen radicals such as o-lipoic acid,'?!
butylated hydroxyanisole,'?> EUK-8,'23 melatonin,'** N-acetyl-L-cysteine,!2>
thymoquinone,'2¢ etc., resulted in disease suppression. Thus, there is a growing
body of evidence indicating that interventions aimed at iron or at the substrates or
products of iron-catalyzed reactions that produce ROI ameliorate EAE disease.
These studies suggest that this pathogenic mechanism may hold potential as a target
for therapeutic intervention for MS.

SUMMARY

The massive quantities of lipids produced by oligodendrocytes may be responsible,
in part, for the high accumulation of iron in this cell type. Some proteins that are
involved with iron management, for example, ferritin and transferrin, are also
expressed in abundance within this cell. Disruption of iron metabolism within oligo-
dendrocytes, or in other cells within the CNS, could help to precipitate or advance
MS, and interventions targeting iron-catalyzed reactions warrant further exploration
for the treatment of MS.
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