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SUMMARY 

 

Multiple sclerosis (MS) is a disease that causes neurological dysfunction. Studies attempting 

to elucidate the role of genes in MS development may aid efforts to control the damage 

caused by the disease that affects two million people worldwide, e.g. improved diagnosis and 

treatment. Although the association of MS and genes has not been fully characterized the 

proposed genetic etiology has been supported by the observed association of MS with the 

Major Histocompatibility Complex (MHC), haplotype HLA-DRB1*1501, DRB5*0101, 

DQA1*0102, DQB1*0602. Iron, or rather the dysregulation thereof, has also been implicated 

as a precipitating factor in MS development.  

 

Considering the factors of iron dysregulation and the genes involved in iron regulation, this 

study aims to identify variation within genes involved in iron metabolism namely the high 

iron gene (HFE), solute-carrier family 40 (iron regulated transporter) member 1 gene 

(SLC40A1), hepcidin anti-microbial peptide (HAMP), cytochrome b reductase 1 (CYBRD1) 

and hemojuvelin (HJV). Screening of 40 patients (33 female, seven male; 33 Caucasian, seven 

Coloured) for each of the five genes was achieved by the Heteroduplex Single-Stranded 

Conformation Polymorphism (HEX-SSCP) technique. Semi-automated DNA sequencing 

allowed for verification and characterization of the variants detected. Results included 

identification of four novel variants present in only the Caucasian patient group, characterized 

as IVS4-53G→A (HFE) (one of 33 patients; 3%), IVS2-65delA (CYBRD1) (two of 32 

patients; 6.3%), 3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) (one of 31 patients; 

3.2%) and 219delG (HJV) (two of 33 patients; 6%). In addition, a total of 15 previously 

described variants were identified (seven intronic and eight exonic) of which three were also 

prevalent in only the Caucasian patient group. This study aimed to investigate the differences 



between patient and control group variant frequencies, gene-gene interaction and genotype-

phenotype relationships. Analysis did not indicate statistically significant associations. 

However, these investigations were limited because of the small cohort size and lack of 

control serum iron and ferritin levels.  

 

This pilot study detected variants within each of the five genes that were screened allowing 

for identification of potential markers and/or contributors to the disease, MS. Although 

statistical analysis, to elucidate the role of each/all of the variants identified, did not show 

significance, future studies of a larger cohort may indicate otherwise. This exploration has 

highlighted the potential role of iron and the iron metabolism related genes in the 

development of this disease. In doing so it has enriched the limited knowledge of the disease 

and the development of MS specifically within the South African population. It thus provides 

insight as to the direction that future genetic studies relating to MS and the role of iron in the 

development of the disease, should take.  

 



OPSOMMING 

Veelvuldige sklerose (VS) is ‘n siekte wat neurologiese disfunksie veroorsaak. Studies wat 

poog om die rol van gene in die ontwikkeling van VS te wys, mag hulp verleen aan pogings 

om die skade veroorsaak deur die siekte wat twee miljoen mense wêreldwyd affekteer, te 

beheer bv. deur verbeterde diagnose en behandeling. Alhoewel die assosiasie met VS en gene 

nog nie ten volle gekarakteriseer is nie, word die voorgestelde genetiese etiologie ondersteun 

deur die waargenome assosiasie van VS met die hoof histokombineerbaarheidskompleks, 

haplotipe HLA-DRB1*1501, DRB5*0101, DQA1*0102, DQB1*0602. Yster, of eerder die 

wanbalans daarvan, is ook geïmpliseer as ‘n presipiterende faktor in VS se ontwikkeling. 

 

Deur in agname van yster-wanbalans en die gene betrokke by yster-regulering, beoog die 

studie om variasie te identifiseer in gene betrokke by yster-metabolisme, naamlik die hoë 

yster geen (HFE), oplosbare-draer familie 40 (yster gereguleerde vervoerder) lid 1 geen 

(SLC40A1), sitochroom b reduktase 1 (CYBRD1), hepsidien anti-mikrobe peptied (HAMP) en 

hemojuvelien (HJV). Die toets/sifting van 40 pasiënte (33 vroulik, sewe manlik; 33 

Kaukasiër, sewe Kleurling) vir elk van die vyf gene was behaal deur middel van die 

heterodupleks enkel-string konformasie polimorfisme (HEX-SSCP) tegniek. Deels-

geoutomatiseerde DNS volgordebepaling het die bevestiging en karakterisering van die 

waargenome variante toegelaat. Resultate het ingesluit die indentifikasie van vier nuwe 

variante teenwoordig in slegs die Kaukasiër pasiënt groep, gekarakteriseer as IVS4-53G→A 

(HFE) (een van 33 pasiënte; 3%), IVS2-65delA (CYBRD1) (twee van 32 pasiënte; 6.3%), 

3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) (een van 31 pasiënte; 3.2%) en 

219delG (HJV) (twee van 33 pasiënte; 6%). Bykomend was ‘n totaal van 15 reeds beskryfde 

variante geïdentifiseer (sewe intronies en agt eksonies) waarvan drie ook slegs in die 

Kaukasiër pasiënt groep voorkom. Die studie het ook die verskille tussen pasiënt- en kontrole-



groep variant frekwensies, geen-geen interaksie en genotipe-fenotipe verhoudings, ondersoek. 

Analise het nie gedui op statisties betekenisvolle assosiasies nie. Hierdie ondersoek was wel 

beperk deur klein studie kohort groottes en gebrek aan kontrole serum yster en ferritien 

vlakke. 

 

Hierdie loodsondersoek het variante gevind in elkeen van die vyf gene wat ondersoek was en 

dit het toegelaat vir identifisering van moontlike merkers en/of bydraers tot die siekte, VS. 

Alhoewel statistiese analise om die rol van elk/almal van die variante geïdentifiseer te 

verduidelik, nie betekenisvol beduidend was nie, mag toekomstige studies in ‘n groter kohort 

groep anders aandui. Hierdie studie beklemtoon die potensiële rol van yster en die yster-

metabolisme verwante gene in die ontwikkeling van dié siekte. Sodoende het dit die beperkte 

kennis van beide die genetiese etiologie van die siekte asook die ontwikkeling van VS 

spesifiek in die Suid-Afrikaanse bevolking, verryk. Dit voorsien dus insig oor die rigting wat 

toekomstige genetiese studies, verwant aan VS en die rol van yster metabolisme in dié siekte, 

moet inneem. 
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CHAPTER ONE 

 

1. LITERATURE REVIEW 

 

1.1 MULTIPLE SCLEROSIS 

 

Multiple sclerosis (MS) (OMIM #126200) is known as an inflammatory disease of the central 

nervous system (CNS) (Compston et al. 1998, Ebers and Dyment 1998, Noseworthy 1999, 

Kotze et al. 2001, reviewed by Reipert 2004). Areas of damage or the formation of lesions 

(demyelination) mainly occurs in the white matter of the CNS. This damage is formed in 

response to inflammation and it is at these specific points that demyelination occurs (reviewed 

by Reipert 2004). This process is characterized by the loss of the myelin sheath surrounding 

the axon of the neuron and it is accompanied by the ‘slowing down’ or complete loss of nerve 

impulse transmission (reviewed by Reipert 2004).  

 

Secondary symptoms include sensory disturbances, gait ataxia, limb weakness and fatigue 

(reviewed by Noseworthy et al. 2000, reviewed by Reipert 2004). Recurring attacks (relapses) 

may bring about damage to axons, formation of gliotic scar tissue and depletion of 

oligodendrocyte precursors. This, in turn, leads to loss of neurological function (Trapp et al. 

1998, Lucchinetti et al. 1999, Bitsch et al. 2000, Noseworthy et al. 2000). 
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1.2 DISEASE CLASSIFICATION 

 

MS presents earlier in females (18-30 years of age), compared to males (30-40 years of age) 

(reviewed by Reipert 2004). The onset and development of the disease is capricious, affecting 

over two million people globally (Al-Omaishi et al. 1999, Javed and Reder 2006). MS can be 

divided into three clinically distinct groups; namely i) relapsing-remitting (RRMS), ii) 

primary progressive (PPMS) and iii), secondary progressive (SPMS) MS (reviewed Reipert 

2004). Differences concerning pathological features, clinical course and diagnosis, exists 

between PPMS, RRMS and SPMS and will be discussed further. 

 

1.2.1 RELAPSING-REMITTING MS (RRMS) 

 

Relapsing-remitting MS is observed in 80% of patients (reviewed by Noseworthy et al. 2000) 

and its clinical course can be described as recurring acute attacks (relapses) during which 

neurological dysfunction and symptoms become apparent. This is followed by a period of 

remission that is characterized by ‘neurological stability’ as well as symptom stabilization or 

even improvement, until the next relapse occurs (reviewed by Noseworthy et al. 2000, 

Goodin et al. 2002, reviewed by Reipert 2004).  

 

The occurrence, duration and recovery of relapses are highly variable. Attacks (relapses) can 

persist for days to months and periods of remission can continue for weeks up to years. 

Recovery can prove to be either an immediate or gradual process (reviewed by Reipert 2004). 

Relapsing-remitting MS affects predominantly females [female to male ratio of 2:1]. 

Symptoms of relapsing-remitting MS include sensory disturbances, gait ataxia, trunk and limb 
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parethesias, clumsiness, unilateral optic neuritis, sexual dysfunction and diplopia (Compston 

et al. 1998, reviewed by Noseworthy et al. 2000, Goodin et al. 2002). The clinical course of 

RRMS is seen in a minority of other neurological diseases and the abundance of symptoms 

aid the diagnosis of this MS subgroup (reviewed by Pender 2004). 

 

1.2.2 PRIMARY PROGRESSIVE MS (PPMS) 

 

Primary progressive MS presents in an estimated 20% of affected patients (mean age of onset 

approximately 39 years) and it has an almost similar incidence in both males and females 

(1.3:1.0) (Weinshenker 1994, McDonnell and Hawkins 1998, Cottrell et al. 1999, reviewed 

by Noseworthy et al. 2000, reviewed by Pender 2004). The clinical course is found to be 

steadily progressing with a noticeable abatement in physical ability (reviewed by Noseworthy 

et al. 2000, reviewed by Reipert 2004).  

 

It is furthermore characterized by the absence of acute attacks. Frequently, primary 

progressive MS presents as a gradually developing ‘chronic progressive myelopathy’, also 

known as upper motor-neuron syndrome of the legs and paraparesis (reviewed by Noseworthy 

et al. 2000, reviewed by Reipert 2004, reviewed by Pender 2004).  

 

The diagnosis of primary progressive MS proves to be difficult due to its clinical course being 

characteristic of other neurological diseases where symptoms similarly develop over years. 

Also, the presenting symptoms are few, reducing the distinctiveness of PPMS. An example is 

that of the magnetic resonance imaging (MRI) focal lesions present in fewer amounts 
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compared to RRMS and SPMS (Thompson et al. 1990, Kidd 1993, reviewed by Pender 

2004).  

 

1.2.3 SECONDARY PROGRESSIVE MS (SPMS) 

 

Secondary progressive MS presents as RRMS. It will, however, similarly to PPMS, take on a 

pattern of ‘steadily progressing’ CNS dysfunction. This may still be accompanied by relapses, 

but at a reduced rate. It is best understood as the progression of neurological damage even 

between, or with the complete absence of relapses (reviewed by Noseworthy et al. 2000, 

reviewed by Reipert 2004). Within ten years of an initial diagnosis of relapsing-remitting MS, 

50% of these patients develop secondary progressive MS, affecting more females than males 

(2:1) (reviewed by Noseworthy et al. 2000, reviewed by Reipert 2004). 

 

1.3 MS IN CHILDREN 

 

MS in children has also been reported, with 2.7-5% of all reported cases presenting prior to 

the age of 15 years. Individuals affected by MS in their early childhood and infant stages of 

life, account for 0.2-0.7% of the recorded cases (Duquette et al. 1987, Compston et al. 1998, 

Eraksoy et al. 1998, Ruggieri et al. 1999, reviewed by Gadoth 2003). Childhood MS onset is 

often associated with symptoms such as seizures and nausea, vomiting, headaches, brainstem 

and cerebellar dysfunction and fever (reviewed by Gadoth 2003). RRMS occurs in 

approximately 64% of the reported childhood MS cases, whereas SPMS is the second most 

common (24%) and PPMS the least common form seen in children (12%) (Sevon et al. 2001, 

reviewed by Gadoth 2003). 
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1.4 DIAGNOSIS 

 

MS is currently diagnosed based on clinical information combined with visually evoked 

potential tests (VEP), cerebrospinal fluid (CSF) analysis and magnetic resonance imaging 

(MRI) visualization of the spinal cord and brain. 

 

Previous criteria relied solely on clinical data. This required the incidence of at least two 

clinically identified episodes and at least two formed lesions that differ in time of occurrence 

and the CNS location affected. It was furthermore imperative that the observed symptoms be 

explained only by the presence of MS. Revision of the diagnostic criteria allowed for 

incorporation of paraclinical evidence as credible. Diagnosis thus still requires incidence of at 

least two distinct lesions but only one need to be clinically supported by the other(s) based on 

paraclinical findings. The latter includes abnormal VEP, positive CSF and MRI evidence and 

these will be discussed further (seminar by Compston and Coles 2002, Keegan and 

Noseworthy 2002). 

 

The VEP test refers to evaluation of afferent CNS pathway conduction in reaction to sensory 

receptor stimulation. If conduction proves to be atypical this could be indicative of lesion 

presence with conduction affected by a demyelination event. 

 

The CSF of a MS patient may show an increase in oligoclonal immunoglobin G (IgG) bands 

and their potential presence can be determined with protein electrophoresis of the CSF. The 

fact that oligoclonal IgG bands can be identified in the majority of MS patients (>90% of 

cases) strengthens its role as a diagnostic tool. As an indicator of inflammation, these bands 
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thus narrow the field of potential pathogenesis to that of an inflammatory disease. Analysis of 

both the VEP and CSF is of specific importance when it comes to diagnosing an individual 

free of acute attacks, showing progressive deterioration suggestive of PPMS (seminar by 

Compston and Coles 2002, Keegan and Noseworthy 2002). 

 

The MRI scan aids in establishing the location, relative age, degree of damage and 

demyelination activity of lesions (McDonald 2001, seminar by Compston and Coles 2002, 

Keegan and Noseworthy 2002). The visual images obtained with MRI are achieved by 

scanning with radiowave pulses that recognize the relative increase of total water within 

lesions. The pulses can be manipulated to deliver different images, e.g. T1- and T2-weighted 

scans, proton-density (PD) and fluid-attenuated inversion recovery (FLAIR) (refer to Figure 

1.1) and each may supplement the findings of the other (seminar by Compston and Coles 

2002, Keegan and Noseworthy 2002, The Multiple Sclerosis gateway). 
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Figure 1.1 MRI scans of patients with RRMS. Images A and B (arrows indicate) show inflammation 

characteristic of MS. The inflammation can be seen as ‘hyperintensities’ with detection thereof 

allowed for by the fluid-attenuated inversion recovery (FLAIR); Figure C shows ‘black holes’/ 

‘hypointensities’ (arrows indicate) that mark the presence of ‘chronic, inactive lesions’ whereas D 

illustrates the presence of ‘acute enhancing lesions’ (arrows indicate) both achieved by T1 scans 

(Adapted from Javed and Reder 2006). 

 

1.5 THERAPY 

 

As described, MS pathogenesis could be characterized by relapses and remissions (RRMS), 

progression (PPMS) or a combination of both (SPMS). MS therapies are focused at: 1) 

reducing the incidence of relapses, 2) preventing and treating the damage due to these 

episodes and treatment of progression that is once more accompanied by prevention and 
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management of impairment secondary to this. It should be emphasized that the choice of 

treatment is dependent upon the diagnosed MS subtype.   

 

Therapies include administration of corticosteroids or immunomodulators and plasma 

exchange. Corticosteroid therapy, e.g. intravenous allocation of methylprednisolone, is used 

to treat acute relapses accompanied by functional impairment with the aim of accelerating 

recovery. If patients prove unresponsive to corticosteroid treatment, a process of plasma 

exchange may be employed. Immunomodulatory treatment with glatiramer acetate, interferon 

β 1-b or interferon β 1-a, is known to reduce the frequency of relapse occurrence.  

 

Treatments that address the symptoms of MS, including gabapentin and ondansitron, prove 

beneficial for a larger portion of patients compared to the aforementioned treatment, directed 

specifically at disease amelioration (Metz 1998, Compston and Coles 2002, Keegan and 

Noseworthy 2002).  

 

A MS study, including a South African cohort, addressed the issue of low blood iron 

parameters observed within certain patients (van Rensburg et al. 2006). Analysis of iron, 

folate and homocysteine levels were perfomed and in the case of deficiency, the patients were 

advised to augment their diet with the following supplements in Recommended Daily 

Allowance amounts: iron (if their iron status was low), amino acids, essential fatty acids, 

vitamins and minerals with the aim of myelin regeneration, by compensating for deficiency in 

the nutrients needed for proper myelinogenesis. The exact amount and combination of 

nutrients was dependent upon the clinical levels established for each patient. The results 

obtained suggested a plausible influence of the regimen upon myelin regeneration. 
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1.6 SUGGESTED CAUSES OF MS 

 

Although the disease is referred to as an inflammatory disease of the CNS, the exact cause of 

MS is still unidentified (Noseworthy 1999, Kotze et al. 2001). Current research has 

highlighted the potential contribution(s) of genes (Oksenberg et al. 1996, Oksenberg et al. 

2001, Keegan and Noseworthy 2002), autoimmunity (Oksenberg et al. 2001, Keegan and 

Noseworthy 2002) and/or viral infection (Oksenberg et al. 2001, Keegan and Noseworthy 

2002, Miller et al. 2002). 

 

1.6.1 MS AND GENETICS 

 

Adoption studies provide evidence suggestive of a genetic basis for familial aggregation of 

MS. A single study determined the MS occurrence rate in non-biological first-degree 

relatives, living with an index case, and compared it to both the general population and 

biologically related individuals sharing the same environment. A frequency similar to that of 

the general population was found, indicating a contribution of genes to the development of 

MS (Ebers et al. 1995). 

 

A Canadian twin study has shown a higher concordance rate for monozygotic twins (25.9%) 

compared to dizygotic pairs (2.3%) and non-twin siblings (1.9%) (Ebers et al. 1986). A 

further study based on a British population similarly indicated higher concordance rate in 

monozygotic twins (25%) compared to dizygotic pairs (3%). The difference in concordance 

rate highlights the role of a genetic factor in MS development (Mumford et al. 1994). The 

high discordance within the monozygotic groups, however, indicates that a risk factor other 

than the genetic background may also be involved.  
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Sibling studies allow for comparison of full-siblings to half-siblings living together as well as 

half-siblings living apart. A Canadian sibling study showed a higher MS risk in full-siblings 

(3.46%) when compared to the entire half-sibling group (1.32%) (both paternal and maternal 

sibs included). If considered together with the more specific comparison of full-sibling 

(3.46%) to half-sibling in the same environment (1.17%), the definite role of genes becomes 

apparent. A final comparison of half-siblings of shared environment (1.17%) to half siblings 

living apart (1.47%) minimizes the potential involvement of an environmental factor and 

further emphasizes the role of genes in MS pathogenesis (Sadovnick et al. 1996).  

 

1.6.1.1 GENES ASSOCIATED WITH MS 

 

Various studies have emphasized the association existing between the Major 

Histocompatibility Complex (MHC) and MS (Hillert 1994, Kalman and Lublin 1999, Hillert 

2006). Research indicated an association between the human leukocyte antigen haplotype 

(HLA)-DRB1*1501, DRB5*0101, DQA1*0102, DQB1*0602, more specifically represented 

as HLA allele Dw2/DR2/DR15/DR15, DQ6, and an increased risk of MS (Hillert 1994, 

Kalman and Lublin 1999, Hillert 2006).  

 

Early evidence to support this association was found in a study comparing T-cell line 

production of lymphotoxin (LT) and tumor necrosis factor-alpha (TNFα). HLA-DR2-positive 

lines showed a greater production than the HLA-DR2-negative cases and both LT and TNFα 

are known to contribute to MS development (Zipp et al. 1995). The more recent studies have 

identified association with genes Jagged 1 (JAG1) (OMIM +601920) and Pou Domain, Class 

2, Associating Factor 1 (POU2AF1) (OMIM *601206). Utilizing meta-analysis, The Genetic 
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Analysis of Multiple Sclerosis in EuropeanS (GAMES) collaborative, detected a total of 12 

potential MS-associated markers outside of the MHC region. Genotyping narrowed the group 

to three markers denoted as D11S1986, D19S552 and D20S894 and these, in turn, implicated 

JAG1 and POU2AF1 as candidate genes (GAMES Collaborative 2006).  

 

Investigation of JAG1, a ligand of the Notch receptor, suggested a relationship thereof with 

oligodendrocyte precursors and the process of myelin formation. It entailed ‘downregulation’ 

of JAG1 expression and a resulting increase in both ‘precursor maturation’ and ‘myelination’ 

(Wang et al. 1998, John et al. 2002, GAMES Collaborative 2006). Studies have proposed 

that, in MS, the myelin sheath becomes vulnerable to attack due to antibody production 

(intrathecal). The POU2AF1 gene is believed to act as regulator of this IgG gene expression 

(in the B-cells). In light of their respective functions, variation within JAG1 and POU2AF1, 

may contribute to the MS pathogenesis (GAMES Collaborative 2006). Studies investigating 

various regions of interest, proved contradictory and a brief outline is given in Table 1.1 

(Kalman and Lublin 1999). 
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Table 1.1  Overview of studies investigating various genetic regions of interest 

 

Region of interest Potential involvement References 

Major 

histocompatibilty 

complex, class II, DP 

β-1 (HLA DP) 

Membrane protein, 

antigen presentation 

(OMIM *142858, Chataway et 

al. 1998, Dekker et al. 1993, 

Howell et al. 1991, 

Complement 

components 4a (C4A) 

and 4b (C4B) 

Complement factor B 

(CBf) 

Complement 

component 2 (C2) 

Complement components

(OMIM +120810 (C4A), 

OMIM *12080 (C4B), OMIM 

*138470 (CBf), OMIM +21700 

(C2), Francis et al. 1987, 

Hauser et al. 1989, Papiha et al. 

1991)

Large multifunctional 

protease (LMP) 

Transporter , ABC, 

MHC, 1 (TAP1) 

Transporter, ABC, 

MHC, 2 (TAP2) 

Transporter proteins 

(OMIM *170260 (TAP1), 

OMIM *170261 (TAP2), Bell 

and Ramachandran 1995, 

Bennets et al. 1995, Liblau et 

al.1993, Spurkland et al. 1994, 

Vandevyver et al. 1994) 

Tumor necrosis factors 

TNFα, TNFβ 
Proinflammatory cytokine

(OMIM *191160, Braun et al. 

1996, Garcia-Merino et al. 

1996, Mycko et al. 1998, Roth 

et al. 1994, Sumner et al. 1993, 

Weinshenker et al. 1997) 

Myelin-

oligodendrocyte 

glycoprotein (MOG) 

Related to myelin 

production 

(OMIM *159465, Malfroy et 

al. 1995, Roth et al. 1995 
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1.6.2 MS AND AUTOIMMUNITY 

 

An autoimmune disease can be described as triggering of an immunological response aimed 

at an individual’s own bodily constituents. Such a response is suggested to occur secondary to 

the loss of tolerance of the T and B lymphocytes. T and B lymphocytes react to the presence 

of antigens as part of a normal immune response. However, this response is in some instances 

regulated, so as to inhibit a subsequent reaction, and this is termed tolerance. Loss of this 

control/tolerance could potentially allow for T and B lymphocyte response to self-antigens. 

Loss of tolerance may be attributed to one or more of the following factors: cytokines, 

immunoregulatory pathways, molecular mimicry and self-antigens.  

 

The first factor, namely cytokines, could potentially contribute to initiation of an autoimmune 

reaction via the role they play in recruiting and further regulating immune cell function. The 

second factor, immunoregulatory pathways, constitutes T cells that either suppress or enhance 

immune function via their respective cytokine production patterns. It is then speculated that 

over-suppression/activation may result in an autoimmune response. The third factor of 

‘molecular mimicry’ refers to the structural similarity between viral antigens and native 

proteins. Immune cells directed at both are thus produced and autoimmune damage initiated 

(refer to Figure 1.2).  
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Figure 1.2 Hypothesized model of ‘molecular mimicry’ activation of autoimmunity (Adapted from 

Hafler 2004). 

 

Tissue damage e.g. ischaemic injury, results in release of proteins from the site of damage. 

These proteins, referred to as ‘hidden self-antigens’, may in turn cause formation of 

antibodies directed at themselves. These proteins share similarity with the remainder of 

undamaged tissue and, this tissue too may be identified as foreign and immunologically 

attacked.  

 

The proposed autoimmune pathogenesis of MS entails activation of T cells that are specific 

for myelin, perhaps due to loss of tolerance. Once activated, the cells move across the blood 
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brain barrier (BBB) from the peripheral circulation into the CNS. This is followed by the 

interaction of myelin antigens and CD4+ cells and the subsequent initiation of inflammation. 

Inflammation is characterized by the presence of cytokines, both nitrogen and oxygen radicals 

as well as macrophages which all contribute to the destruction of myelin. 

 

Evidence for the role of the immune system in MS pathogenesis has frequently been 

illustrated in different studies. This would include studies showing the presence of various 

inflammatory cells including T cells, B cells and macrophages within and around lesions. 

Their cytokine secretions are also present and investigations have established their damaging 

effects e.g. cell culture research proving TNF-α cytotoxic to oligodendrocytes. Studies 

focusing on the animal model of MS, namely experimental allergic encephalomyelitis (EAE), 

have shown induction thereof by addition of autoreactive T cells to healthy animals. Further 

EAE studies have also established a macrophage-deduction, EAE prevention relationship 

again highlighting the immune component of the disease (Peakman and Vergani 1997, 

Kamradt and Mitchison 2001).  

 

1.6.3 VIRAL FACTORS IMPLICATED IN MS  

 

The hypothesized involvement of a viral factor in the pathogenesis of MS is motivated by the 

following a) studies establishing a link between viral infection and chronic neurological 

diseases (Connolly et al. 1967, Padgett et al. 1971, Gilden 2005), b) the presence of high 

concentrations of IgG in MS patients (Gilden et al. 1996), c) the variable clinical course of 

both viral infections and MS (Gilden et al. 1996, Al-Omaishi et al. 1999, Steinman 2001) and 

d) research showing association between a number of micro-organisms and MS (Murray et al. 
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1992, Stewart et al. 1992, Boerman et al. 1993, Gilden et al. 1996, Soldan et al. 1997, 

Ferrante et al. 1998, Sririam et al. 1999, Friedman et al. 1999, Mirandola et al. 1999, 

Ascherio and Munch 2000, Dessau et al. 2001, Tsai and Gilden 2001, Rodriguez et al. 2001, 

Ascherio et al. 2001, Ascherio and Munch 2003, de Villiers et al. 2006). 

 

The link between viral infection and chronic neurological disease dates back to the 1960s 

(Gilden 2005).  One case is the subacute sclerosing panencephalitis, a chronic inflammatory 

disease that affects both the white and grey matter of the CNS. Paramyxovirus nucleocapsids 

were found in the brain matter of patients with the disease (Gilden 2005). Later research on 

subacute sclerosing panencephalitis further identified high serum and CSF concentrations of 

measles-specific antibodies in patients (Connolly et al. 1967, Gilden 2005). Progressive 

multifocal leucoencephalopathy (PML), a disease characterized by dementia and motor loss, 

is caused by human papovavirus (JC virus). Presence of the virus was observed in the 

oligodendrocytes of a single patient (Padgett et al. 1971).  

 

Disease relating to the CNS is seldom characterized by a high IgG concentration.  All diseases 

showing IgG presence have clinically manifested inflammation and the majority is caused by 

infection. A high IgG concentration is seen in 90% of MS patients and it is localized to the 

CSF and the brain (Gilden et al. 1996). 

 

The clinical course of MS can vary with regards to degree of damage and inflammation and 

similarly a single infectious agent can elicit various pathologies (Al-Omaishi et al. 1999, 

Steinman 2001). Treponema pallidun causes neurosyphilis and is an example of a disease 
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displaying a number of different pathologies. It varies according to area affected and 

characteristics of the lesions formed (Gilden et al. 1996). 

 

Micro-organisms potentially associated with MS, include the JC virus, Coronavirus, 

Herpesviruses and Chlamydia pneumoniae (Murray et al. 1992, Ferrante et al. 1998, 

Friedman et al. 1999, Sririam et al. 1999, Ascherio and Munch 2003). Studies investigating 

the potential association, have delivered controversial results but this could be due to the 

inability to detect a virus whilst in its latent period (Boerman et al. 1993, Gilden et al. 1996, 

Mirandola et al. 1999, Dessau et al. 2001, Tsai and Gilden 2001, Rodriguez et al. 2001).   

 

An example of research proving viral detection involves the JC virus identified in the CSF of 

MS patients (9%). The virus was not observed in either the control group or patients with 

other neurological diseases (Ferrante et al. 1998). Similarly detection of certain 

Coronaviruses’ ribonucleic acid (RNA) was found only in MS patients (Stewart et al. 1992). 

Two herpesviruses, i.e. Epstein-Barr virus (EBV) and Human herpes 6 (HHV-6) have shown 

association with MS (Friedman et al. 1999, Ascherio and Munch 2003). Findings include 

increase in anti-EBV in serum titres prior to onset of MS as well as elevated HHV-6 

antibodies in relapsing-remitting MS patients (Soldan et al. 1997, Ascherio et al. 2001). 

 

Further research investigating potential viral contributors has identified the presence of MS-

associated retrovirus (MSRV) (retroviral elements) within chromosomal regions which in turn 

have shown association with MS (Perron et al. 1997, Perron et al. 2000). A study 

investigating MS within the South African population (de Villiers et al. 2006), identified the 

presence of this virus and furthermore allowed for genotyping of the solute carrier family 11 
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(proton-coupled divalent metal ion transporter), member 1 (SLC11A1) gene with regards to 

the promoter region in which a) allele two contributes to infection resistance and b) alleles 

three and five promote autoimmunity (Searle and Blackwell 1999, Kotze et al. 2001, de 

Villiers et al. 2006). Of specific interest was the identification of two related patients, both 

with the SLC11A1 gene alleles three and five, of which one showed presence of MSRV.  The 

virus positive individual was characterized by early onset of MS and this finding highlights 

both the suggested viral etiology and the interaction of genetics and the environment in MS 

development (de Villiers et al. 2006). 

 

1.7 MS AND IRON 

 

Iron plays a crucial role in processes of myelinogenesis, immunity and infection resistance. 

Dysregulation thereof can thus disrupt myelin formation, impair immune system function and 

increase the success of pathogen infection. Myelin damage, autoimmunity and viral infection 

are all proposed contributors to MS and the link of iron to each, in turn, highlights its role in 

MS development.  

 

Iron is an important key factor for the synthesis of myelin. It serves as part of the catalytic 

centre of various enzymes involved in lipid synthesis for which the oligodendrocytes are 

responsible (LeVine and Makclin 1990, Connor et al. 1995, LeVine and Chakrabarty 2004). 

Lipid is the main constituent of myelin (Morell et al. 1993). This function of iron may thus 

account for its high concentration established in oligodendrocytes, and further observed in the 

myelin, of healthy individuals (Dwork et al. 1988, Gerber and Connor 1989, Connor and 

Menzies 1990, Connor et al. 1990, LeVine and Makclin 1990, Levine 1991, LeVine and 
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Chakrabarty 2004). The presence of ferritin receptors located on the oligodendrocytes, as 

established by Hulet et al. (1999), provides additional evidence supporting the role of iron in 

the myelinogenesis process. The ferritin receptors allow for the tranfer of iron to the 

oligodendrocytes. Irregular mental and motor function and myelin production have been 

linked to iron deficiency within the CNS (Connor et al. 2001). 

 

However, if not homeostatically controlled, the high iron concentrations are suggested to 

contribute to MS development (LeVine and Chakrabarty 2004). Tissues from MS and EAE 

cases have shown locationally uncharacteristic iron deposits within e.g. macrophages and 

neurons (LeVine 1997, Forge et al. 1998, LeVine and Chakrabarty 2004). This iron 

dysregulation may show release of iron from the proteins they characteristically bind to after 

which the iron may remain unbound or form associations with surrounding molecules. 

Whether unbound or weakly associated, both forms have the potential to catalyze reactions 

causing reactive oxygen intermediate (ROI) formation (LeVine and Chakrabarty 2004). ROI 

is responsible for oxidative tissue damage that includes impairment of molecules such as 

deoxyribonucleic acid (DNA), lipids and proteins. Collectively a) the presence of lipid 

peroxidation products in both MS and EAE tissues and b) the beneficial use of treatment 

focused on oxidative damage interruption, provides evidence suggesting that iron 

dysregulation contributes to MS development (Hunter et al. 1985, Brett and Rumbsy 1993, 

LeVine and Chakrabarty 2004). The damage caused to DNA molecules, due to the oxidative 

tissue damage, may include base modification and single-strand breaks (Stohs and Bagchi 

1995, Lloyd et al. 1997, Ahsan et al. 2003). Research suggests that the altered DNA becomes 

immunogenic and that the resulting autoimmune response entails autoantibody formation 

directed against self-antigens e.g. ‘ROI-modified’ DNA molecules. The response may 
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furthermore include autoantibody binding to native (ROI-unaffected) DNA molecules (Blount 

et al. 1989, Ahsan et al. 2003). 

 

The described potential for a pathogenic etiology in MS, in turn, emphasizes the possible 

contribution of iron. The growth and thus survival of these pathogens, is in part dependent 

upon the availability of iron. Infection is met by the reduction in plasma iron levels referred to 

as the ‘iron-withholding defence system’ that includes iron binding by transferrin and 

suppressed iron efflux from macrophages (Brock 2000, Kotze et al. 2001, Ong et al.  2006). 

 

Iron contributes to the proper functioning of the immune system. Studies of iron deficiency 

have illustrated a) failure of T-cells to proliferate normally, b) decreased number of 

circulating T lymphocytes and c) reduction of cytotoxic activity of lymphocytes (Brock 

2000). During infection, normal iron regulation is therefore crucial to concomitantly achieve 

a) viral resistance and b) proper immune function. Homeostatic disruptions of iron 

metabolism may allow for infectious success of the proposed pathogenic factors in MS 

(Brock 2000, Kotze et al. 2001, Ong et al.  2006).  

  

In summary, the processes of myelinogenesis and immune system development 

(autoimmunity) are dependent upon iron availability. Accurate homeostatic control of iron, in 

turn, is needed to guard against ROI formation and infection (viral).  
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1.8 GENES INVOLVED IN IRON HOMEOSTASIS  

 

The importance of iron homeostasis within the body highlights the potential role of factors 

involved in iron transport and metabolism. These factors include genetics and more 

specifically, the genes involved in the molecular control of the metal. The high-iron gene 

(HFE), solute-carrier family 40 (iron regulated transporter) member 1 gene (SLC40A1), 

hepcidin anti-microbial peptide gene (HAMP), cytochrome b reductase 1 gene (CYBRD1) and 

hemojuvelin gene (HJV) will subsequently be discussed. 

  

1.8.1 HFE 

 

The HFE gene (OMIM +235200) is located at chromosome position 6p21.3-22.1 and spans a 

total of 9.5 kilobases (kb). It is classified as part of, and shares similarities with, the major 

histocompatibility complex MHC class I gene group. The first structural similitude is the 

presence of three extracellular domains α1-3, an untranslated cytoplasmic-3’ tail and a final 

transmembrane domain, each encoded for by an individual exon (Feder et al. 1996, Parkkila 

et al. 1997, Riegert et al. 1998, Bahram et al. 1999). A further similarity is the presence of 

cysteine residues within the α2 and α3 domains. These residues are responsible for disulfide 

bridge formation, which in turn has a suggested involvement in the secondary and tertiary 

structure of the predicted 343 amino acid glycoprotein that HFE encodes for (Bjorkman and 

Parham 1990, Feder et al. 1996, Feder et al. 1997, Lebrόn et al. 1998, Riegert et al. 1998). 

The protein interacts with β2 microglobulin (β2m) and this association allows for cell surface 

expression (Feder et al. 1997, Bahram et al. 1999).  
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HFE does, however, differ from the MHC class I molecules with regards to expression and 

function. Areas of HFE expression is limited e.g. epithelia, crypt cells and the function is not 

related to antigen-binding, due to narrowing of the cleft needed for such associations 

(Parkkila et al. 1997, Bastin et al. 1998, Bahram et al. 1999). Its function is rather related to 

binding of transferrin receptor 1 (TfR1), which is accompanied by a decrease in TfR 1 affinity 

for transferrin (Tf) binding. The resulting effect is decreased iron absorption (Parkkila et al. 

1997, Feder et al. 1998, Lebron et al. 1998, Drakesmith et al. 2002). An animal study, 

characterized by the disruption of the HFE gene homolog in mice, showed a remarkable 

increase in liver iron concentration suggesting HFE as a key factor in iron regulation (Zhou et 

al. 1998). 

 

Development of the iron-overload disease, haemochromatosis, has been accredited to the 

presence of variants within the HFE gene. The variants described include the C282Y 

missense mutation and the H63D polymorphism (Feder et al. 1997, Bahram et al. 1999).  

 

1.8.2 SLC40A1 

 

The solute-carrier family 40 (iron regulated transporter) member 1 gene, SLC40A1, is located 

at locus 2q32 where it comprises a length of  20,18 kb (OMIM *604653, Haile 2000, Njajou 

et al. 2001, GENATLAS database). Also known as ferroportin 1, iron-regulated transporter 1 

gene (IREG1) or metal transporter 1 gene (MTP1), the gene has a total of eight exons that 

allows for the coding of a highly conserved, 571 amino acid, iron exporting protein 

characterized by the presence of ten transmembrane domains. The 5’untranslated region 

(UTR) of the mRNA comprises an iron responsive element shown to bind iron regulatory 
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proteins (IRP). Sites of protein expression include the syncytiotrophoblasts of the placenta, 

Kupfler cells of the liver, duodenal enterocytes and reticuloendothelial macrophages (Leibold 

and Munro 1988, McKie et al. 2000, Abboud and Haile 2000, Donovan et al. 2000, Njajou et 

al. 2001, Lymboussaki et al. 2003, Pietrangelo 2004). Functional studies, in which the 

SLC40A1 gene was deleted from mice intestines, showed iron deficiency anemia, highlighting 

iron homeostasis (Donovan et al. 2005). 

 

Variants identified within the SLC40A1 gene, including the single nucleotide transversions, 

A144C and A77D, have shown association with the autosomal dominantly inherited 

haemochromatosis type 4 (Njajou et al. 2001, Montosi et al. 2001). 

 

1.8.4 HAMP 

 

The hepcidin anti-microbial peptide (HAMP) gene is positioned at locus 19q13 where it 

encompasses a 2.5 kb region (OMIM *606464). Alternatively named liver-expressed 

antimicrobial peptide (LEAP) and hepcidin (HEPC), the gene includes three exons and it 

allows for synthesis of a prepropeptide that is 84 amino acids in length (Krause et al. 2000, 

Park et al. 2001, Pigeon et al. 2001, reviewed by Ganz 2003).  

 

A 24-residue N-terminal signal sequence, a pentaaginyl proteolysis site and an active C-

terminal peptide consisting of 25 amino acids characterize the protein. A total of eight 

cysteines allow for the formation of four disulfide bridges and this, in turn, ensures the 

stabilization of the active peptide, beta-sheet structure (Krause et al. 2000, Park et al. 2001, 

reviewed by Ganz 2003). The positional separation of the hydrophobic and hydrophilic side 
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chains observed in HAMP is characteristic of antimicrobial peptides (reviewed by Ganz 

2003). Protein expression sites identified via reverse transcriptase polymerase chain reaction 

(RT-PCR) analysis included the liver, heart, brain and lungs (Krause et al. 2000). The role of 

HAMP as iron regulator is evidenced by murine studies in which transgenic mice developed 

microcytic hypchromic anemia due to HAMP overexpression (Nicolas et al. 2002). 

 

The HAMP gene has been associated with the development of juvenile haemochromatosis. 

Described variants include R56X, responsible for protein truncation, and 1 bp deletion, 

93delG, resulting in an elongated propeptide (Roetto et al. 2003). 

 

1.8.3 CYBRD1 

 

Cytochrome b reductase 1 (CYBRD1), alias DCYTB, is located at chromosome position 2q31 

(OMIM *605745). The gene includes five exons within its 35.6 kb length and it codes for a 4 

254 bp long mRNA that, when spliced, gives rise to three alternative transcripts. The 286 

amino acid protein contains six transmembrane domains and four conserved Histidine 

residues. The CYBRD1 gene was mapped to chromosome two by the International Radiation 

Hybrid Mapping Consortium (McKie et al. 2001).  

 

Functionally, the protein has a suggested involvement in transport of iron across the epithelial 

cells of the intestine, with its expression observed in the brush-border membrane of duodenal 

enterocytes. It may be responsible for the reduction of iron from ferric to ferrous (Fe3+→ 

Fe2+), the latter form allowing for transport into villus cells via the divalent metal transporter 

1 (DMT1 also known as natural resistance-associated macrophage protein 2 (NRAMP2)) 
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(McKie et al. 2001, Lee et al. 2002, Hentze et al. 2004). Evidence from animal studies (mice) 

showed contradictory findings as to the suggested role of the DCYTB gene in iron 

homeostasis. Early findings show murine haemochromatosis resulting in increased DCYTB 

expression whilst a more recent study, involving loss of gene function via gene targeting, 

demonstrated normal dietary iron absorption (Muckenthaler et al. 2003, Herrmann et al. 2004, 

Gunshin et al. 2005). 

 

1.8.5 HJV 

 

The hemojuvelin (HJV) gene spans 4 265 base pairs and is positioned at chromosome region 

1q21 (OMIM *608374). The gene includes four exons coding for a 2.2 kb mRNA transcript 

with the various spliced isoforms encoding for proteins proposed to be 200, 313 and 423 

amino acids in length (GENATLAS database, Papanikolaou et al. 2004, Celec 2005). 

 

The suggested structure is that of a ‘von Willebrand factor type D domain’ containing 

transmembrane protein furthermore characterized by the presence of an ‘Arginine-Glycine-

Asparagine’ (Arg-Gly-Asp) motif. Sites of protein expression include the heart, skeletal 

muscle, liver and pancreas (Celec 2005). Murine studies that entailed mutation of the HJV 

gene were achieved by the integration of a targeting construct. The loss of gene function was 

met with iron overload and these animal models thus suggest that the HJV gene is involved in 

iron homeostasis (Niederkofler et al. 2005).  
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The development of haemochromatosis type 2a has shown association with variants identified 

in the HJV gene. The mutations include the single nucleotide variants, I218T and G320V 

(Papanikolaou et al. 2004). 
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1.9 OBJECTIVES OF THIS STUDY 

Objectives of this study: 

 

i  Mutation analysis of HFE, SLC40A1, HAMP, CYBRD1 and HJV was performed to 

investigate these genes as potential modifier loci in MS the pathogenesis.  

 

ii Statistical analysis of the variants identified to: 

 

a) test for significant differences in variant prevalence between the patient and control 

groups 

b) investigate potential gene-gene interaction 

c) establish genotype-phenotype correlations with the determined serum iron and  

ferritin levels 
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CHAPTER TWO 

 

2. DETAILED EXPERIMENTAL PROCEDURES 

 

2.1 SUBJECTS 

 

A total of 40 blood samples were obtained from patients presenting with MS. The patient 

cohort comprises of 33 females and seven males (mean age: females ~ 43; males ~ 39). 

Ethnically the group consists of seven Coloured cases (six females and one male) and 33 

Caucasian individuals (27 females and six males). The population termed ‘Caucasian’ 

consists of individuals of European origin (Dutch, German, British and French). The 

‘Coloured’ individuals are descendant of the San, Khoi, Javanese, African Negro and Western 

European populations (Loubser et al. 1999). Patients were referred to Tygerberg hospital, 

South Africa and diagnosed with relapsing-remitting type MS. Ethical approval for the project 

has been obtained from the Research Committee of theUniversity of Stellenbosch, no: 96/099. 

Written informed consent was obtained from both the patient and control groups.  

 

 

An additional 70 whole blood samples were obtained as population-matched controls, these 

included 20 individuals of Coloured (17 females and three males) and 50 Caucasian 

individuals (38 female and 12 males) (mean age: females ~ 42; males ~ 45).  
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2.2 METHODS 

 

2.2.1 DNA extraction  

 

A modification of the Miller et al. (1988) technique was used to extract DNA from a 15 ml 

whole blood sample. The initial extraction step required the transfer of each whole blood 

sample to a 50 ml Falcon tube (Merck), allowing for the addition of 30 ml of cold lysis buffer 

(155 mM ammonium chloride (NH4Cl), 10 mM potassium hydrogen carbonate (KHCO3) and 

0.1 mM ethylene diamine tetra-acetic acid (EDTA) – pH 7.4). The solution was placed on ice 

for 15 minutes and mixed by means of inversion at 5-minute intervals. This step allowed for 

complete lysis of the red blood cells and was followed by centrifugation for 10 minutes at 

1500 revolutions per minute (rpm) (Hermle Z 200 A, Labnet). 

 

The supernatant was removed and the washing of the pellet with 10 ml cold phosphate 

buffered saline (PBS) (27 mM potassium chloride (KCl), 137 mM sodium chloride (NaCl), 8 

mM di-sodium hydrogen orthophosphate anhydrous (Na2HPO4) and 1.5 mM potassium 

dihydrogen orthophosphate (KH2PO4)), followed. The solution was centrifuged for 10 

minutes at 1500 rpm (Hermle Z 200 A, Labnet) and the supernatant was subsequently 

discarded. Addition of 3 ml nucleic lysis buffer (10 mM Tris(hydroxymethyl)aminomethane 

(Tris-HCl) ((CH2OH)3CNH2-Cl), 400 mM NaCl and 2 mM EDTA – pH 8.2), 1% (w/v) 

sodium dodecyl sulphate (SDS) and 1.5 mg/ml proteinase K (Roche Diagnostics), aided the 

resuspension of the pellet. It was then mixed and placed in a water bath at 55ºC for overnight 

incubation. 
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The incubation step was followed by the addition of 1 ml saturated 6 mM NaCl and vigorous 

shaking of the solution for 1 minute. The sample was then centrifuged for 30 minutes at 3500 

rpm (Hermle Z 200 A, Labnet) and the supernatant placed in a new Falcon tube. The 

supernatant was shaken for 15 seconds, centrifuged for 15 minutes at 2500 rpm (Hermle Z 

200 A, Labnet) and transferred to a clean tube. Two volumes of ice-cold (±99.9%) (v/v) 

ethanol (EtOH) was added to the solution to allow for precipitation of the DNA at room 

temperature (30 minutes). 

 

The DNA was transferred to a new 1.5 ml tube (Eppendorf). This was followed by the 

addition of 1 ml 70% (v/v) EtOH for the removal of excess salt. The solution was centrifuged 

for 15 minutes at 14 000 rpm (4ºC) (AvantiTM 30 Centrifuge, Beckman), the EtOH was 

removed and the pellet air-dried at room temperature. The DNA pellet was dissolved in 200-

800 µl double distilled water (ddH2O) (dependent on the pellet size), shaken at room 

temperature overnight and then stored at 4ºC. Spectrophotometry allowed for determination 

of DNA quantity and quality (Nanodrop® ND-1000 Spectrophotometer (Nanodrop 

Technologies,USA)). 

 

2.2.2 Polymerase chain reaction (PCR) amplification 

 

Polymerase chain reaction amplification of the various exons under investigation was 

performed in 25 µl reactions, consisting of 50 ng DNA, 0.25 mM of each 2’-deoxynucleotide 

(dNTP) (dATP, dCTP, dGTP, dTTP) (Fermentas), 10 pmol of each primer (Inqaba Biotech), 

0.5U Taq polymerase (Fermentas), 1 x ammonium sulphate buffer ((NH4)2SO4) (Fermentas) 

and magnesium chloride (MgCl2) (Fermentas) as specified in Table 2.1. Primer design was 
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achieved using the Primer3 programme (Rozen and Skaletsky 2000) and the reference gene 

sequences as listed in Table 2.1. 

 

Amplification was achieved using an Applied Biosystems PCR cycler (GeneAmp®PCR 

system 2700). Four different PCR programs were used to amplify the exons under 

investigation and they have been designated programs A to D. 

 

PCR program A was characterized by an initial denaturation step at 94ºC for 5 minutes. This 

was followed by 35 cycles of denaturation at 94ºC for 30 seconds, annealing for 30 seconds 

(as specified for each exon and listed in Table 2.1), and a 30 second extension at 72ºC. A final 

extension step was performed at 72ºC for 10 minutes. 

 

Program B was initiated by a 2 minute, 95ºC denaturation step. This was ensued by 35 cycles 

of denaturation at 95ºC for 30 seconds, annealing for 45 seconds (as specified for each exon 

and listed in Table 2.1) and an extension at 72ºC for 30 seconds. Program completion was 

characterized by an extension step at 72ºC for 10 minutes. 

 

Program C was as follows: denaturation for 5 minutes at 95ºC. The subsequent 35 cycles of 

denaturation at 95ºC for 1 minute and annealing for 2 minutes (as specified for each exon and 

listed in Table 2.1) preceded a final 72ºC, 10 minute, extension step.  

 

PCR conditions for program D consisted of denaturation at 95ºC for 2 minutes. This was 

followed by 10 cycles of denaturation for 30 seconds at 95ºC, annealing for 45 seconds 

(according to the specified annealing temperature listed in Table 2.1 (Ann 1)) and a 30 second 
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extension at 72ºC. The same conditions were then repeated for a total of 30 cycles (according 

to the specified annealing temperature listed in Table 2.1 (Ann 2)). An extension step was 

achieved at 72ºC for 5 minutes. 
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Table 2.1 Oligonucleotide primers designed for amplification of PCR products subjected to HEX-SSCP analysis 

 
 

EXON FORWARD PRIMER (5’-3’) *Tm (ºC) REVERSE PRIMER (5’-3’) *Tm (ºC) PRODUCT 
SIZE (bp) MgCl2

PCR 
PROGRAM 

 
ANN 1 

 
ANN 2 

REFERENCE 
SEQUENCE 

   HFE gene       NM_000410 
(GENATLAS) 

a 
1 TTACTGGGCATCTCCTGAGC 62.45 CTAGTTTCGATTTTTCCACCCC 60.81 256 1.5 µl C 55   

2A b 
ACATGGTTAAGGCCTGTTGC 60.40 a

 TACCCTTGCTGTGGTTGTGA 60.40 298 1.5 µl C 55   

2B a TGACCAGCTGTTCGTGTTCT 60.40 b 
CAGCTGTTTCCTTCAAGATGCA 60.81 257 1.5 µl C 55   

a
 3A CTTGGGGATGGTGGAAATAG 60.40 CTCCAGGTAGGCCCTGTTCT 64.50 279 1.5 µl C 57   

a
 3B CGAGGGCTACTGGAAGTACG 64.50 CTGCAACCTCCTCCACTCTG 64.50 280 1.5 µl C 57   

4A b 
TGGCAAGGGTAAACAGATCC 60.40 a

 TCCACCTGGCACGTATATCTC 62.57 289 1.5 µl C 57   

4B a
 TACCCCCAGAACATCACCAT 60.40 b 

CTCAGGCACTCCTCTCAACC 64.50 265 1.5 µl C 57   

5 a GAGAGCCAGGAGCTGAGAAA 62.45 b 
CAGAGGTACTAAGAGACTTC 58.35 297 1.5 µl C 55   

6 b 
TAGTGCCCAGGTCTAAATTG 58.35 b 

TGAGTCTCTAGTTTTGTCTCC 58.66 202 1.5 µl C 57   

NM_014585    SLC40A1 gene       (GENATLAS) 
c 

1A CCAGTCGGAGGTCGCAGG 66.73 CAGGAGTGCAAGGAACTGG 62.32 318 0.75 µl D 60   
c
 1B CCAAAGTCGTCGTTGTAGTC 60.4 TTCCTCCAGAACTCGTGTAG 60.4 276 2 µl B 55   

d 
2 TGGATAAGCATTCTGCCCTC 60 AAAGCATGTGTACTTGGATG 56 275 2 µl B 55   

c
 3 GATAAGGAAGCAACTTCCTG 58.35 CCTGGTTGTTTCTCTCCTAG 60.4 339 2 µl E 60 55  

d
 4 GGATAAGAACAGTCTCACTG 58 TTCATCCTTTACCACTACCAG 60 243 2 µl E 60 55  

d
 5 TTAAACTGCCTTGTTTAGTG 54 GCCTCATTTATCACCACCG 58 278 2 µl E 60 55  

c 
6 TTGTGTAAATGGGCAGTCTC 58.35 CATTTAAGGTCTGAACATGAG 56.71 368 3 µl D 60   

c
 7A GCTTTTATTTCTACATGTCC 54.25 CCAGTTATAGCTGATGCTC 58.01 352 2 µl D 60   

c
 7B GGGTACGCCTACACTCAG 62.18 CAGTTGTAATTTCAGGTATC 54.25 298 2 µl E 60 55  

c
 7C GAAGATATCCGATCAAGGTTC 58.66 TTAATGGATTCTCTGAACCTAC 57.08 259 2 µl B 55   

c
 8A TTGAAATGTATGCCTGTAAAC 54.76 TTCCTTCCTAACTTCTTTTGC 56.71 343 3 µl D 60   

c
 8B CCGATTTGCCCAAAATACTC 58.35 TTTCCATGCCTCAACATAAGG 58.66 297 2 µl B 55   

c
 8C GTTTTTACCACAGCTGTGCC 60.4 GTCTTCATACTTGAAGAATTTG 55.22 359 2 µl B 55  

 
 

Key: *Tm = 2(nA+nT) + 4(nG+nC) (Thein and Wallace 1986), Abbreviations: Tm – melting temperature, Ann – annealing temperature, bp – base pairs 
References: aVR Human, bProf C Camaschella, cThis study, dNjajou et al. 2001
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Table 2.1 Oligonucleotide primers designed for amplification of PCR products subjected to HEX-SSCP analysis (continued) 

 

 
Key: *Tm = 2(nA+nT) + 4(nG+nC) (Thein and Wallace 1986), Abbreviations: Tm – melting temperature, Ann – annealing temperature, bp – base pairs 
References: aVR Human, eMerryweather-Clarke, fF Booley

EXON FORWARD PRIMER (5'-3') *Tm (ºC) REVERSE PRIMER (5'-3') *Tm (ºC) PRODUCT 
SIZE (bp) 

 
MgCl2

PCR 
PROGRAM 

 
ANN 1 

REFERENCE 
SEQUENCE 

   HAMP gene        NM_021175.2  
(GENATLAS) 

e
 1 AGCAAAGGGGAGGGGGCTCAGACC 71.40 TCCCATCCCTGCTGCCCTGCTAAG 69.69 262 1.5 µl D 60  

a
 2 AAACCACTTGGAGAGGAGCA 60.40 GAAGGAAGGGAATGTGAGCA 60.40 235 1.5 µl D 55  

a
 3 GCAACAGTGATGCCTTTCCT 60.40 CCAGCCATTTTATTCCAAGACC 60.81 272 1.5 µl D 55  

   CYBRD1 gene      NM_024843 
(GENATLAS) 

f
 1 GAGACAGCCCCAAGAAGTCG 64.5 TTCACGGAGGACCCTCTGCC 66.55 378 2 µl A 60.5  

f
 2 CCAGTGTGTCAAACTGTTC 58.01 CATTTACAGTCTGAATTG 54.25 346 2 µl A 51.1  

f
 3 TTGTCATACACATATTGC 52.8 CATTTTCCCAGTGAACAAGTA 56.71 318 2 µl A 53.8  

f
 4A GCATGTTGCTGTATCATCCTGT 60.81 AGAGTAGGCTGGCATGGAAC 62.45 254 2 µl A 57  

f
 4B AAATGGAGGCACTGAACAGG 60.4 AGGAGAAGCAAAACTGTAGAGC 60.81 217 2 µl A 57  

   HJV gene      ENS00000168509 
(ENSEMBL) 

f
 1 TCTGGCCAGCCATATACTCC 62.45 CAGCATTTGGACGAGACA 57.62 293 1.5 µl A 58  

f
 2 CACTCCACATTATCCTTACC 58.35 ATGCCCACCCCTACATAGC 62.32 284 2 µl A 56  

f
 3A ACACTCCGATAGAGCAGAGG 62.45 TCTTCGATGCCATGTACCG 60.16 298 2 µl A 56  

f
 3B TAGAGGTGGGGGTTCATCAG 62.45 CGGCCTTCATAGTCACAAGG 62.45 300 2 µl A 58  

f
 3C GACCTGATGATCCAGCACAA 60.4 TGGCTTGGACAAAGAGGAAG 60.4 287 2 µl A 56  

f
 3D CCGGACCCTTGTGACTATGA 62.45 GTGCCGTGGAAGAATCCTC 62.32 279 2 µl A 58  

f
 4A TCAAGGATTGAGGGCCATAG 60.4 TGGATCTCCACATGGTTCC 60.16 300 2 µl A 56  

f
 4B GGTGGATAATCTTCCTGTAGC 60.61 CGACGATTGCGCTCTGAT 59.9 288 2 µl A 56  

f
 4C GCTCTCCTTCTCCATCAAGG 62.45 CTGAGCTGCCACGGTAAAGT 62.45 256 2 µl A 58  

f
 4D GGGCTTCCAGTGGAAGATGC 64.5 CCCCTTACTGAATGCAAAGC 60.4 238 2 µl A 58  

f
 4E CATCTCTTCCCCTCAGATGC 62.45 GATCCGGAATGCAGTAACCT 60.4 300 2 µl A 56  

f
 4F AAGCAGGGCCTAGGAGACAC 64.5 TGCTTTCAGCTCTTGCCTCT 60.4 283 2 µl A 58  

f
 4G CTGCATTCCGGATCTCTGTG 62.45 TTTTGAATCAAGAAAGCAGAACA 55.64 291 2 µl A 56  

f
 4H TGTGTGTGTAAGGTATGTTCTGC 60.99 CTGATACTTCCGAGCCCTCTTTC 64.55 58 2 µl A 261  
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2.2.3 Agarose gel electrophoresis  

 

PCR products were electrophoresed on a 2% (w/v) horizontal agarose gel [consisting of 4 g 

agarose, 200 ml Tris-borate/EDTA (TBE) (90 mM Tris-HCl (pH 8.0), 90 mM boric acid 

(H3BO3) and 1 mM EDTA) and 0.01% ethidium bromide (EtBr))] to determine successful 

amplification. The PCR product (5 µl) and Cresol red loading buffer (5 µl) [consisting of 

0.02% (w/v) cresol red and 0.34% (w/v) sucrose] was mixed and loaded in the wells of the 

agarose gel. Electrophoresis was performed at 120 V for an hour in 1 x TBE buffer solution. 

A 100 base pair (bp) ladder (Fermentas) verified amplification of the correct fragment size. 

Visualization was achieved by ultraviolet light transillumination on the Multigenius Bio 

Imaging System (Syngene, Cambridge,UK). 

 

2.2.4 Heteroduplex Single-Stranded Conformation Polymorphism analysis (HEX-SSCP) 

 

The PCR amplified products were subjected to Heteroduplex Single-Stranded Conformation 

Polymorphism (HEX-SSCP) analysis (Kotze et al. 1995) performed on a Hoefer vertical gel 

apparatus. Electrophoresis was achieved on 12% (w/v) polyacrylamide (PAA) gels 

supplemented with urea ((NH2)2CO) [consisting of 7.5% (w/v) Urea, 1.5 x TBE (135 mM 

Tris-HCl (pH 8.0), 135 mM boric acid and 1.5 mM EDTA), 12% (w/v) PAA (1%C of a 40% 

stock [99 acrylamide (AA):1 bisacrylamide (BAA)], 0.1% (w/v) ammonium persulfate (APS) 

and 0.1% (v/v) TEMED. 

 

Gels were cast, allowed to completely polymerise and then placed into the electrophoresis 

tank filled with 1 x TBE buffer. The upper chamber was subsequently filled with 1.5 x TBE 
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buffer (135 mM Tris-HCl (pH 8.0), 135 mM boric acid and 1.5 mM EDTA). Bromophenol 

blue loading buffer (15 µl) [consisting of 0.05% (w/v) bromophenol blue, 0.05% (w/v) xylene 

cyanol, 95% (v/v) formamide (de-ionised) and 20 mM EDTA] was added to 20 µl of the PCR 

products. The solution was then denatured for 10 minutes at 95ºC and immediately placed on 

ice. The denatured PCR product (15 µl) was loaded and electrophoresed at 4˚C at 300V for 16 

hours.  

 

Further HEX-SSCP analysis was performed using 10% polyacrylamide gels supplemented 

with glycerol [gel consisting of 10% (v/v) glycerol, 0.5 x TBE (45 mM Tris-HCl (pH 8.0), 45 

mM boric acid and 0.5 mM EDTA), 600 µl APS and 60 µl TEMED]. This additional analysis 

was done only for exons showing limited visualization on the original urea supplemented 

gels. The protocol used was similar to the one described for urea with differences pertaining 

to TBE concentration and temperature. The upper chamber of the electrophoresis tank was 

filled with 0.5 x TBE buffer and electrophoresis was done at room temperature. 

 

Staining of gels was achieved using both silver staining and EtBr staining. The silver staining 

method (Beidler et al. 1982) entailed disassembling of gels and fixing of the DNA in 300 ml 

fixing solution (10% (v/v) ethanol and 0.5% (v/v) acetic acid) for 10 minutes. Washing with 

dH2O for 1 minute, followed. The gels were stained in 300 ml staining solution (consisting of 

0.1% (w/v) silver nitrate (AgNO3)) and rinsed in dH2O for 5 seconds. The final developing 

step was marked by addition of formaldehyde to the developing solution (1.5% (w/v) sodium 

hydroxide (NaOH) and 0.155% (v/v) formaldehyde) and the subsequent developing of the 

gels therewith. The gel developing continued until clear bands were visually identified 

whereafter the gels were rinsed with dH2O and sealed between 2 transparencies. Washing of 
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the gels with the silver staining solutions was achieved using an orbital shaker (Stoball Life 

Sciences Inc, NC,USA).  

 

Staining with EtBr was achieved by placing the gels within the EtBr solution (0.01% (v/v)) 

for 10 minutes, followed by 3 minutes of destaining in ddH2O. DNA fragments were 

visualized (ultraviolet light transillumination) and photographed with the Multigenius Bio 

Imaging System (Syngene, Cambridge,UK). 

 

2.2.5 Restriction enzyme digestion  

 

Restriction enzyme digestion was performed for the HFE gene variant, IVS2+4T→C, and the 

CYBRD1 gene variant, S266N, because successful scoring of the variants could not be 

achieved using HEX-SSCP images. Genotyping of the variants was achieved by using the 

enzymes RsaI (IVS2+4T→C) (Fermentas) and TspRI (S266N) (New England Biolabs).  

 

Digestion with RsaI was performed in 20 µl reactions consisting of 10 µl PCR product, 1 x 

TangoTM buffer [consisting of 33mM Tris-acetate (TA) (pH 7.9 at 37°C), 10 mM magnesium 

acetate (MgAc), 66 mM potassium acetate (KAc), 0.1 mg/ml bovine serum albumin (BSA)] 

and 2U enzyme. The digestion reactions were placed in a water bath for 16 hours at 37ºC.   

 

TspRI digestion was similarly achieved in 20 µl reactions. This included 10 µl PCR product, 1 

x NEBuffer 4 (consisting of 50 mM KAc, 20 mM TA, 10 mM MgAc, 1 mM dithiothreitol 

(DTT)), 100 µg/ml BSA and 10U enzyme. Water bath incubation was performed for 16 hours 

at 65ºC.  
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Subsequently, 10 µl of the digested product was mixed with 10 µl cresol loading buffer 

[consisting of 0.02% (w/v) cresol red and 0.34% (w/v) sucrose] and loaded on a 2% (w/v) 

agarose horizontal agarose gel [consisting of 4 g agarose, 200 ml 1 x TBE (90 mM Tris-HCl 

(pH 8.0), 90 mM boric acid and 1 mM EDTA) and 0.01% (v/v) ethidium bromide (EtBr))]. 

Loading of a 100 bp O’GeneRulerTM (5 µl) (0.1 µg/µl, Fermentas) allowed for identification 

of digested fragment sizes. Samples were then electrophoresed at 80 V for 90 minutes in 1 x 

TBE buffer solution (90 mM Tris-HCl (pH 8.0), 90 mM boric acid and 1 mM EDTA). 

Visualization of the gels using the ultraviolet light transillumination on the Multigenius Bio 

Imaging System (Syngene, Cambridge,UK), allowed for genotype determination. 

 

2.2.6 Semi-automated DNA sequencing 

  

Samples showing conformational variation upon HEX-SSCP analysis were subjected to semi-

automated DNA sequencing. The PCR products were purified prior to sequencing using the 

Wizard SV Gel and PCR Clean-Up System (Promega). Briefly, the purification technique 

included addition of an equal volume of membrane binding solution (4500 mM guanidine 

isothiocyanate (GIT), 500 mM KAc (pH 5.0)) to the PCR product. The solution was then 

transferred to a Spin Column assembly and incubated for 1 minute at room temperature.  

Centrifugation of the column was done at 14 000 rpm for 1 minute (Eppendorf centrifuge 

5415 D) and the filtered liquid discarded. 

 

Subsequently, membrane washing solution (10 mM KAc (pH 5.0), 80% (v/v) ethanol, 0.017 

mM EDTA) (700 µl) was added to the Spin Column assembly and centrifuged at 14 000 rpm 

for 1 minute (Eppendorf centrifuge 5415 D). This was followed by a further washing step that 
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entailed addition of 500 µl membrane washing solution and centrifugation at 14 000 rpm for 1 

minute (Eppendorf centrifuge 5415 D). The filtered solution/ flow-through was discarded and 

a final centrifugation step was performed to allow for evaporation of the residual EtOH (14 

000 rpm, 1 minute) (Eppendorf centrifuge 5415 D). The Minicolumn was placed in a clean 

1.5 µl microcentrifuge tube and 50 µl nuclease free water applied directly to the column 

centre. The final step incorporated incubation for 1 minute at room temperature and 

centrifugation (14 000 rpm, 1 minute) (Eppendorf centrifuge 5415 D). Eluted DNA was 

stored at 4ºC. 

 

Cycle sequencing was performed on a GeneAmp®PCR system 2700 thermocycler. Each 

reaction consisted addition of 3.3 ng/µl primer (Table 2.1), 1 µl termination ready reaction 

mix [BigDye® Terminator v3.1 cycle sequence kit (Applied Biosystems)] and 9.9 ng of the 

purified PCR product. The cycle program was initiated by a denaturation step for 10 seconds 

at 96ºC. This was followed by 25 cycles of denaturation for 10 seconds at 96ºC, annealing for 

10 seconds at 96ºC and an extension for 4 minutes at 60ºC. The products were loaded onto an 

ABI Prism 3130Xl Genetic Analyzer (Applied Biosystems) automated sequencer and 

subsequently electrophoresed. Analysis of sequencing results entailed a) visual examination 

of the electropherograms and b) alignment of sequences with the reference (wild-type) 

sequence (reference sequences for primer design: listed in Table 2.1) using BioEdit Sequence 

Alignment Editor v7.0.1 (Hall 1999). 
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2.2.7 Statistical analysis 

 

Allele and genotype frequencies were calculated for both the patient and control populations. 

The Hardy-Weinberg equilibrium (HWE) test was performed for the respective populations 

with regards to each variant identified (p>0.05). The two groups were then compared 

statistically and differences tested for significance by means of chi-squared (χ2) analysis with 

Yates’ correction and/or Fischer’s exact test (applicable to smaller population sizes) (Elston 

and Forthofer 1977). Statistical significance was defined as a probability value smaller than 

0.05. Analysis was achieved using the, Microsoft Excel 2000 software, allowing for 

determination of frequencies and probability values. Results were verified with both 

STATISTICA (StatSoft, Inc. (2003) STAT (data analysis software system), version 6 and the 

Epi Info computer software (Epi Info™ (utilities StatCalc) v3.3.2, release date: 9 February 

2005; Division of Public Health Surveillance). Investigation of gene-gene interaction and 

genotype-phenotype correlations were done according to Butt et al. (2003).
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Table 2.2 Alphabetic list of chemicals and reagents 
 

Chemical/Reagent Supplier 
AA (acrylamide) Sigma-Aldrich 
Acetic acid Associated Chemical Enterprises 
Agarose Bio-basic 
APS (ammonium persulfate) Associated Chemical Enterprises 
BAA (bisacrylamide) Sigma-Aldrich 
BigDye® Terminator v3.1 cycle sequence kit Applied Biosystems 
Boric acid Sigma-Aldrich 
Bromophenol blue Sigma-Aldrich 
BSA (bovine serum albumin for TspR I digestion) New England Biolabs 
Cresol red Sigma-Aldrich 
ddH2O (double distilled water) Adcock Ingram 
2’-deoxynucleotide (dNTPs) (dATP, dCTP, dGTP, dTTP) Fermentas 
EDTA (ethylene diamine tetra-acetic acid) Sigma-Aldrich 
EtBr (ethidium bromide) Sigma-Aldrich 
EtOH (ethanol) Sigma-Aldrich 
Formaldehyde Associated Chemical Enterprises 
Formamide Sigma-Aldrich 
Gliserol Merck 
Glucose Associated Chemical Enterprises 
KCl (potassium chloride) Sigma-Aldrich 
KHCO3 (potassium hydrogen carbonate) Sigma-Aldrich 
KH2PO4 (potassium dihydrogen orthophosphate) Sigma-Aldrich 
O’GeneRulerTM (Ladder 100 bp) Fermentas 
MgCl2 (magnesium chloride) Fermentas 
NaCl (sodium chloride) Sigma-Aldrich 
Na2HPO4 (di-sodium hydrogen orthophosphate anhydrous)     Sigma-Aldrich 
NaOH (sodium hydroxide) Sigma-Aldrich 
NEBuffer 4  New England Biolabs 
NH4Cl (ammonium chloride) Sigma-Aldrich 
(NH4)2SO4 (ammonium sulfate buffer) Fermentas 
PBS (phophate buffered saline) Oxoid 
Proteinase K Roche diagnostics 
Rsa I  Fermentas 
SDS (sodium dodecyl sulphate)  Sigma-Aldrich 
Silver nitrate (AgNO3) Sigma-Aldrich 
TangoTM buffer  Fermentas 
Taq polymerase Fermentas 
TEMED Sigma-Aldrich 
Tris-HCl (Tris(hydroxymethyl)aminomethane) Sigma-Aldrich 
TspR I New England Biolabs 
Urea Sigma-Aldrich 
Wizard SV Gel and PCR Clean-Up System  Promega 
Xylene cyanol Sigma-Aldrich 
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CHAPTER THREE 

The potential involvement of genes related to iron 

metabolism in the development of multiple sclerosis 

 

3. ABSTRACT 

 

Iron has been implicated in the development of multiple sclerosis (MS) due to the various 

roles of iron in neurodegeneration, myolinogenesis, immunity, autoimmunity and infection 

resistance. Our study population included unrelated MS patients from South Africa, with 

individuals mainly from the Caucasian and Coloured populations. Genes involved in iron 

homeostasis/metabolism have been screened for variants possibly involved in the 

pathogenesis of the disease. These genes include HFE, SLC40A1, HAMP, CYBRD1 and HJV. 

Mutation detection was performed by screening with the Heteroduplex Single-Stranded 

Conformation Polymorphism (HEX-SSCP) technique. This allowed for detection of 19 

variants. Four of the variants were novel, including IVS4-53G→A (HFE), IVS2-65delA 

(CYBRD1), 3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) and 219delG (HJV). 

The known variants identified, included seven intronic (HFE: IVS2+4T→C, IVS4+48G→A, 

IVS4-44T→C, IVS5-47G→A; SLC40A1: IVS1-24G→C; CYBRD1: IVS1-4C→G, 

IVS2+8T→C) and eight exonic variants (HFE: H63D, C282Y; SLC40A1: I109, V221; 

HAMP: G71D; CYBRD1: S266N; HJV: A310G, S264).  
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The statistical analysis performed involved testing for significant differences in variant 

prevalence between the patient and control groups, potential gene-gene interaction and 

genotype-phenotype correlations. These investigations, however, revealed no statistically 

significant associations. The study succeeded in identifying variants and further investigation 

in a larger cohort is needed to establish the potential contribution of these variants in the 

development of MS. 

 

3.1 INTRODUCTION 

 

Multiple sclerosis is a disease that incapacitates the proper functioning of the central nervous 

system. It is characterized by inflammation that causes demyelination of axons and as a result 

the ability of the CNS to conduct nerve impulses is diminished (Compston et al. 1998, Ebers 

and Dyment 1998, Noseworthy 1999, reviewed by Reipert 2004). Symptomatic manifestation 

of this loss of neurological function may include gait ataxia and sensory disturbances (Trapp 

et al. 1998, Lucchinetti et al. 1999, Bitsch et al. 2000, Noseworthy et al. 2000). 

 

The disease predominately affects females and has been categorized into three sub-types that 

vary according to the pathogenesis [relapsing-remitting multiple sclerosis (RRMS), primary 

progressive (PPMS) and secondary progressive (SPMS)] (Weinshenker 1994, McDonnell and 

Hawkins 1998, Cottrell et al. 1999, reviewed by Noseworthy et al. 2000, reviewed by Pender 

2004, reviewed Reipert 2004). RRMS is characterized by an ongoing cycle of acute attack 

(neurological dysfunction) followed by remission (stabilizing) (reviewed by Noseworthy et 

al. 2000, Goodin et al. 2002, reviewed by Reipert 2004). PPMS shows a more gradual 

development of disease (reviewed by Noseworthy et al. 2000, reviewed by Reipert 2004) 

   43



                                                                                                                        CHAPTER THREE 

whilst SPMS could be explained as a combination of the first two sub-types with neurological 

deterioration observed both during and between acute attacks (reviewed by Noseworthy et al. 

2000, reviewed by Reipert 2004).  

 
Several factors have been implicated in the etiology of MS, including a genetic contribution 

(Oksenberg et al. 1996, Oksenberg et al. 2001, Keegan and Noseworthy 2002), autoimmunity 

(Oksenberg et al. 2001, Keegan and Noseworthy 2002) and viral infection (Oksenberg et al. 

2001, Keegan and Noseworthy 2002, Miller et al. 2002). Iron, in turn, has a suggested role in 

each of these factors (Blount et al. 1989, LeVine and Makclin 1990, Connor et al. 1995, 

Connor et al. 2001, Ahsan et al. 2003, LeVine and Chakrabarty 2004). 

 

The majority of studies addressing the genetics of MS have delivered contradictory or 

ambiguous findings (Kalman and Lublin 1999, Kotze et al. 2001). The research aimed at 

investigating MS and genetics in the South African population is limited. One such study 

involved screening of a Caucasian cohort for the HFE gene mutations H63D and C282Y. 

Comparison of patient variant frequencies to those obtained for the controls did not reveal 

statistically significant associations (Kotze et al. 2005). 

 

Iron availability is essential for both the proper synthesis of myelin and normal immune 

system function (Blount et al. 1989, LeVine and Makclin 1990, Connor et al. 1995, Brock 

2000, Connor et al. 2001, Ahsan et al. 2003, LeVine and Chakrabarty 2004). However, iron is 

involved in the formation of reactive oxygen intermediates (ROI), molecules that are 

responsible for oxidative tissue damage. The molecules attacked by these intermediates have 

been implicated in the initiation of an autoimmune response (Blount et al. 1989, Stohs and 

Bagchi 1995, Lloyd et al. 1997, Ahsan et al. 2003). Additionally, iron is needed for survival 
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of pathogens and if not withheld from host-infecting agents, it may contribute to the 

infectious success of pathogens (Brock 2000, Kotze et al. 2001, Ong et al. 2006). 

 

This study aims to elucidate the potential role of iron in MS development, by investigating 

genes involved in iron homeostasis and/or metabolism, including HFE, SLC40A1, HAMP, 

CYBRD1 and HJV, in the South African Caucasian and Coloured populations.  

 

3.2 METHODS 

 

Ethical approval was obtained from the Ethics Review Committee of the University of 

Stellenbosch (ref: 96/099) that adheres to the Guidelines of Helsinki. 

 

3.2.1 Subjects 

 

The study cohort included 40 unrelated MS patients and 70 healthy population-matched 

controls from the South African population. The patient group included 33 Caucasian (27 

females and six males) and seven Coloured (six females and one male) individuals all 

diagnosed with relapsing-remitting type MS. Serum iron and ferritin levels were determined 

for the majority of the patient cohort. The control group included 60 females (43 Caucasian, 

17 Coloured) and ten males (seven Caucasian, three Coloured). Iron parameters were not 

established for the control cohort. In this study, Caucasian refers to individuals from 

European descent and “Coloured” refers to individuals with Mixed Ancestry (Loubser et al. 

1999). Written informed consent was obtained from all the participants. 
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3.2.2 Experimental procedures 

 

A modification of the Miller et al. (1988) technique was used to extract DNA from the whole 

blood samples obtained. Polymerase chain reaction (PCR) amplification was performed using 

the primers as listed in Table 2.1 (see Chapter Two) to amplify the various exons of the genes 

investigated. Heteroduplex Single-Stranded Conformation Polymorphism (HEX-SSCP) 

analysis (Kotze et al. 1995) was achieved by resolving the PCR products on 12% 

polyacrylamide gels supplemented with 7.5% urea. Samples were denatured at 95˚C for 10 

min and electrophoresis was done at 4˚C for 16 hours (300V). The exons characterized by 

limited visualization on the 12% gels were further analyzed using 10% polyacrylamide gels 

supplemented with 10% glycerol. The gels were subsequently stained with ethidium bromide 

or by means of the silver staining method (Beidler et al. 1982). DNA on ethidium bromide 

stained gels were visualized by ultraviolet light transillumination. Samples indicating mobility 

shifts or conformational variation were subjected to semi-automated DNA sequencing (ABI 

Prism 3130Xl Genetic Analyzer) (refer to Chapter Two for the detailed experimental 

procedures). 

 

3.2.3 Statistical analysis 

 

Allele and genotype frequencies were calculated for both the patient and control populations. 

Upon determination of the Hardy-Weinberg equilibrium (HWE) (p>0.05), the groups were 

compared statistically and analysis was achieved by chi-squared (χ2) analysis with Yates’ 

correction and/or Fischer’s exact (applicable to smaller population sizes) (Elston and 

Forthofer 1977). A probability value smaller than 0.05, was defined as statistically significant.  
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Analysis performed to determine potential gene-gene interaction and genotype-phenotype 

correlations, was as according to Butt et al. (2003). 

 
 

3.4 RESULTS 

 

The variants identified in the genes investigated as well as the allele frequencies thereof for 

patient and control groups are shown in Table 3.1. All the variants studied were in Hardy-

Weinberg equilibrium for the various population groups, except for the IVS1-4C→G 

(CYBRD1) and IVS4+48G→A (HFE) variants due to an uneven distribution of genotypes 

(IVS1-4C→G, Caucasian: 12 heterozygous individuals present in the patient group compared 

to two heterozygous and three homozygous control individuals; IVS4+48G→A, Caucasian: 

19 heterozygous patient individuals compared to 48 heterozygous individuals in the control 

group; Coloured: five heterozygous patients compared to 14 heterozygous individuals in the 

control group). Statistical analysis was performed using the chi-squared (χ2) analysis with 

Yates’ correction and/or Fischer’s exact test. However, no statistically significant associations 

were observed upon investigation of the variants identified. The uncorrected chi-squared and 

probability values for the different variants are provided in the text following.
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Table 3.1 Allele frequencies of the variants identified within this study 

Gene Exon/ 

 

Intron 
Variant Allele frequenciesa Allele frequenciesa

   CPMS CC MPMS MC 
   (2n=66) (2n=100) (2n=14) (2n=38) 

HFE 2 H63Dc (Feder et al. 1996) 0.14 0.09 0.07 0.21 
   (2n=64) (2n=98) (2n=12) (2n=38) 
 2 IVS2+4T→Cb (Beutler and West 1997) 0.25 0.37 0.3 0.45 
   (2n=60) (2n=86)   
 4 C282Yb (Feder et al. 1996) 0.06 0.06 - - 
   (2n=66) (2n=98) (2n=14) (2n=38) 
 4 IVS4+48G→Ac (Totaro et al. 1997) 0.44 0.49 0.36 0.37 
   (2n=66) (2n=98)   
 4 IVS4-53G→Ac, d (This study) 0.02 - - - 
   (2n=66) (2n=98) (2n=14) (2n=38) 
 4 IVS4-44T→Cc (Beutler and West 1997) 0.05 0.01 0.14 0.13 
   (2n=66) (2n=98) (2n=14) (2n=34) 
 5 IVS5-47G→Ab (Beutler and West 1997) 0.41 0.48 0.64 0.56 
   (2n=64) (2n=78) (2n=12) (2n=18) 

SLC40A1 1 IVS1-24G→Cb (Devalia et al. 2002) 0.80 0.82 1.00 0.72 
     (2n=14) (2n=26) 
 4 I109c (Zaahl et al. 2004) - - 0.07 0.04 
   (2n=48) (2n=82) (2n=14) (2n=24) 
 6 V221b (Devalia et al. 2002) 0.75 0.68 0.93 0.66 
   (2n=58)    

HAMP 3 G71Dc, d (Merryweather-Clarke et al. 2003) 0.03 - - - 
   (2n=66) (2n=86) (2n=14) (2n=24) 

CYBRD1 1 IVS1-4C→Gb (Zaahl et al. 2004) 0.18 0.10 0.21 0.04 
   (2n=66) (2n=86) (2n=14) (2n=24) 
 2 IVS2+8T→Cb (Zaahl et al. 2004) 0.81 0.86 0.90 0.83 
   (2n=64)    
 2 IVS2-65delAc, d (This study) 0.03 - - - 
   (2n=62) (2n=78) (2n=14) (2n=36) 
 4 S266Nb (McKie et al. 2001) 0.69 0.79 0.86 0.69 
   (2n=62)    

 4 
3’UTR+26delACGTCACGTTTCAAAACTAc 
(This study) 0.02 - - - 

   (2n=66)    
HJV 3 219delGc, d (This study) 0.03 - - - 

   (2n=64)    
 4 S264c, d (Lee et al. 2004) 0.02 - - - 
   (2n=64)    
 4 A310Gc, d (Lee et al. 2004) 0.02 - - - 

Abbreviations: CPMS Caucasian MS patient group, CC Caucasian control group, MPMS 
Coloured MS patient group, MC Coloured control group, 2n total alleles (variation amongst 
variants according to the sample total successfully amplified), aAllele frequency of 
polymorphic allele denoted, bIdentified in both heterozygous and homozygous state, 
cIdentified only in heterozygous state, dVariants identified only in the patient group, 
*Probablity values determined for the allele frequencies 
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HFE gene 

 

Analysis of the HFE gene allowed for detection of six previously characterized variants. 

These included four intronic variants namely IVS2+4T→C, IVS4+48G→A, IVS4-44T→C 

and IVS5-47G→A. The remainder, H63D and C282Y, were positioned within exons two and 

four, respectively. In addition, a novel intronic variant was detected and characterized as 

IVS4-53G→A. 

 

The IVS2+4T→C variant characterized by a T to C transition at nucleotide position four at 

the 5’ end (donor site) of intron two, was identified in both the Caucasian and Coloured 

populations using restriction enzyme digestion (Figure 3.1). A total of 12 Caucasian patients 

were heterozygous for the variant and two were homozygous. The variant representation 

within the Coloured patient group included two heterozygous individuals and one 

homozygous patient. Similarly, hetero- and homozygosity for the variant was observed within 

the Caucasian (28 heterozygous and four homozygous) and Coloured (11 heterozygous, three 

homozygous) control individuals (statistical analysis: Caucasian: χ2 = 2.45, P = 0.12; 

Coloured: χ2 = 0.49, P = 0.49).  
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Figure 3.1  

A) IVS2+4T→C* 

                                           N                           Ho                      He 

 

257 bp 
181 bp 

 

B) Variant creates a recognition site 

Banding pattern Restriction digest sizes
N 257 bp 
He 257 bp, 181 bp 
Ho 181 bp 

 

C) RsaI recognition site 5’ GT↓AC 3’ 

5’ tgaccagctgttcgtgttctatgatcatgagagtcgccgtgtggagccccgaactccatgggtttccagtagaatttcaagccaga 

gtggctgcagctgagtcagagtctgaaagggtgggatcacatgttcactgttgacttctggactattatggaaaatcacaaccacagcaa

gggt acgtggagagggggcctcaccttcctgaggttgtcagagcttttcatcttttcatgcatcttgaaggaaacagctg 3’ 

 

Legend to figure 3.1 A) Schematic representation of restriction enzyme digestion using RsaI 

of the IVS2+4T→C variant detected in the HFE gene [N = homozygous wild-type, Ho = 

homozygous variant, He = heterozygous banding pattern], Arrows indicate: varying sized 

DNA fragments generated using 2% horizontal agarose gel electrophoresis stained with EtBr, 

B) Size differences indicated when variant is present and fragment cut with RsaI, C) Partial 

sequence of exon two of the HFE gene, Arrow indicates: enzyme recognition site, [green, 

primer binding sites, blue enzyme recognition sequence], *100 bp DNA ladder was loaded 

(not shown here) to verify the size of the fragments generated 
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The intronic variant IVS4+48G→A caused a G to A transition at nucleotide position 48 at the 

5’ end of intron four. The variant presented only in its heterozygous form upon analysis of 

this study cohort. The variant was observed in 29 patients and 48 controls within the 

Caucasian group whilst the Coloured population showed prevalence of the variant in five 

patient and 14 control individuals. The presence of IVS4-44T→C, causing a T to C transition 

at nucleotide position 44 at the 3’ end (acceptor site) of intron four, within the study cohort, 

was identified only in a heterozygous state. The variant was observed in three Caucasian 

patients and in one population-matched control individual. This variant was also shown to be 

present in the Coloured population, and was observed in two patients and five control 

individuals (statistical analysis: Caucasian: χ2 = 2.06, P = 0.15; Coloured: χ2 = 0.01, P = 

0.92). The known intronic variant identified, IVS5-47G→A (G to A transition 47 nucleotides 

from the 3’ end of intron 5), was detected in 22 Caucasian patients (17 heterozygous, five 

homozygous) and in 35 Caucasian controls (23 heterozygous, 12 homozygous). The Coloured 

group was characterized by three heterozygous and three homozygous patients. Control 

screening revealed presence of the variant in a total of 13 individuals (seven heterozygous, six 

homozygous) (statistical analysis: Caucasian: χ2 = 0.79, P = 0.37; Coloured: χ2 = 0.29, P = 

0.59). Identification of the novel, single nucleotide base pair variant, IVS4-53G→A, causing 

a G to A transition at nucleotide position 53 at the 3’ end of intron four, was limited to the 

Caucasian patient group and was identified only in one of 33 patients (refer to Figure 3.2). 

The variant was present in a heterozygous state. 
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Figure 3.2 
 
A) IVS4-53G→A 
 
         He       N 

       
 

Legend to figure 3.2 Schematic representation of A) heteroduplex AgNO3 visualization (12% 

polyacrylamide gel supplemented with 7.5% urea) and electropherogram of the novel variant, 

IVS2-65delA, identified in the CYBRD1 gene [electropherograms: red thymidine (T), blue 

cytidine (C), green adenosine (A), black guanosine (G)] Arrows indicate: aberrant bands 

(HEX-SSCP); point of variation (electropherograms), N = homozygous wild-type, He = 

heterozygous banding pattern 

 

The exonic variant, H63D characterized by a nucleotide change from C to G at nucleotide 

position 187 (g.187C→G, changing the amino acid from Histidine to Aspartic acid) was 

identified only in its heterozygous state in nine Caucasian MS patients and in one Coloured 

MS patient. Analysis of the ethnically-matched control individuals recognized nine Caucasian 

and six Coloured individuals heterozygous for the variant (statistical analysis: Caucasian: χ2 = 

0.88, P = 0.35; Coloured: χ2 = 1.38, P = 0.24). Screening for the C282Y missense mutation 

that results in a change at nucleotide position 845 from G to A (g.845G→A, changing the 

amino acid from Cysteine to Tyrosine), identified two homozygous Caucasian MS patients 
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and its absence from the Coloured MS patient group. Investigation of the Caucasian control 

population was subsequently performed, with heterozygosity for the variant established in a 

total of five control individuals (statistical analysis: Caucasian: χ2 = 0.04, P = 0.83).  

 

SLC40A1 gene 

 

Investigation of the SLC40A1 gene revealed the presence of variation within intron 1 (IVS1-

24G→C) and exons four (I109) and six (V221). These are all previously described variants. 

 

The IVS1-24G→C variant caused a G to C transversion at nucleotide position 24 at the 3’ end 

of intron one. Analysis of the Caucasian patient group allowed for detection of this variant in 

21 homozygous and nine heterozygous patients. The Caucasian control was characterized by 

a total of 28 homozygous and eight heterozygous individuals. Screening of the Coloured 

population allowed for detection of the variant in six homozygous patients. The Coloured 

control group was characterized by five heterozygous and four homozygous individuals. The 

statistical analysis of the variant within the Coloured population indicated a marginally 

significant uncorrected probability value (uncorrected: χ2 = 4.00, P = 0.05; Yates’ corrected: 

χ2 = 2.25, P = 0.13; Fischer’s exact: P = 0.06 (one-tailed) and P = 0.07 (two-tailed)).  

 

I109, a synonymous amino acid substitution (Isoleucine) changing a C to T at nucleotide 

position 327 (g.327C→T), was identified in one Coloured patient and in one population-

matched control individual (statistical analysis: Coloured: χ2 = 0.21, P = 0.65). The V221 

variant, changing a T to C at nucleotide position 663 (g.663T→C), causing a synonymous 

substitution (Valine), was observed in both the Caucasian and Coloured population groups. 
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Homozygosity for this variant was observed in six Coloured patients whilst only one patient 

was heterozygous for the variant. A total of 12 heterozygous and 12 homozygous individuals 

were identified in the Caucasian patient group. Screening of the control group allowed for 

detection of the variant within both the Caucasian (22 heterozygous and 17 homozygous 

control individuals) and Coloured (eight heterozygous and four homozygous individuals) 

population groups (statistical analysis: Caucasian: χ2 = 0.66, P = 0.42; Coloured: χ2 = 3.36, P 

= 0.07). 

 

HAMP gene 

 

Investigation of the HAMP gene, allowed for detection of the previously characterized G71D 

mutation in exon 3, in two Caucasian patients. This variant, changing a G to an A at 

nucleotide position 212 (g.212G→A), causing a Glycine to Aspartic acid amino acid 

substitution, was absent in the population-matched control individuals and was observed only 

in the heterozygous state. 

 

CYBRD1 gene 

 

HEX-SSCP analysis of the CYBRD1 gene identified three previously described variants, 

including two intronic, [IVS1-4C→G (intron one) and IVS2+8T→C (intron two)] and one 

exonic [S266N (exon four)]. Mutation analysis further revealed two novel variants, including 

IVS2-65delA (intron two) and 3’UTR+26delACGTCACGTTTCAAAACTA (3’ untranslated 

region) and a previously described single nucleotide variant, S266N (McKie et al. 2001) 
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within exon four. Analysis of CYBRD1 gene, exons one, two and three showed absence of 

variation. 

 

The intronic variant, IVS1-4C→G, causing a C to G transversion at nucleotide position four 

at the 3’ end of intron one, was identified in its heterozygous state in 12 Caucasian and three 

Coloured patients. Upon analysis of the Caucasian control group, two heterozygous and three 

homozygous individuals were identified. Investigation of the Coloured control population 

revealed one heterozygous individual for this variant (statistical analysis: Coloured: χ2 = 2.80, 

P = 0.10). Variant, IVS2+8T→C, causing a T to C transition at nucleotide position eight from 

the 5’ end of intron two, was present in both the Caucasian and Coloured patient and control 

groups. The Caucasian group included 12 heterozygous and 21 homozygous patients and an 

additional 12 heterozygous and 31 homozygous control individuals. The Coloured patient 

group included two heterozygous and five homozygous individuals whilst the control group 

comprised of four heterozygous and eight homozygous cases (statistical analysis: Caucasian: 

χ2 = 0.50, P = 0.46; Coloured: χ2 = 0.04, P = 0.85). 

 

The exonic variant S266N, causing a transversion at nucleotide position 797 (g.797G→A) 

that results in the amino acid substitution of Serine with Asparagine, was present in both the 

ethnic groups studied. The variant was also identified in both the heterozygous and 

homozygous state. A total of 15 heterozygous and 14 homozygous Caucasian patients were 

identified and the Caucasian control group included 14 heterozygous and 24 homozygous 

individuals. The Coloured patient group showed two heterozygous and five homozygous 

individuals. Screening of the population-matched control individuals identified seven 
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heterozygous cases and nine homozygous individuals (statistical analysis: Caucasian: χ2 = 

1.89, P = 0.17; Coloured: χ2 = 1.39, P = 0.24) (refer to Figure 3.3). 

Figure 3.3 

A) S266N 

                                          Ho                          N                         He 

 
 

       203 bp 
       128 bp 
         75 bp 

B) Variant abolishes a recognition site 
 

Banding pattern Restriction digest sizes 
N  128 bp, 75bp 

He 203 bp, 128 bp, 75 bp 
Ho 203 bp 

 
C) TspRI recognition site 5’ CAG↓TG 3’ 
 
5’ aaatggaggcactgaacagggagcaagaggttccatgccagcctactctggcaacaacatggacaaatcagattcagagttaaa 

cag tgaagtagcagcaaggaaaagaaacttagctctggatgaggctgggcagagatctaccatgtaaaatgttgtagagatagagcc 

atataacgtcacgtttcaaaactagctctacagttttgcttctcct 3’ 

 

Legend to figure 3.3 A) Schematic representation of restriction enzyme digestion using 

TspRI of the S266N variant detected in the CYBRD1 gene [N = homozygous wild-type, Ho = 

homozygous variant, He = heterozygous banding pattern], Arrows indicate: varying sized 

DNA fragments generated using 2% horizontal agarose gel electrophoresis stained with EtBr, 

B) Size differences indicated when variant is absent and fragment cut with TspRI, C) Partial 

sequence of exon four of the CYBRD1 gene, Arrow indicates: enzyme recognition site, 

[green, primer binding sites, blue enzyme recognition sequence], *100 bp DNA ladder was 

loaded (not shown here) to verify the size of the fragments generated 
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The novel CYBRD1 gene variant IVS2-65delA caused a deletion of an A at nucleotide 

position 65 from the 3’ end of the intron (refer to Figure 3.4). The variant was identified in 

two Caucasian patients, both being heterozygous and was not identified in the control group. 

A novel 19 bp deletion in the 3’ untranslated region of the gene 

(3’UTR+26delACGTCACGTTTCAAAACTA’) was identified in one Caucasian patient in a 

heterozygous state and was absent from the population-matched control individuals (refer to 

Figure 3.5). 

 
Figure 3.4  
 
A) IVS2-65delA 
       
         N         He 

             
 

Legend to figure 3.4 Schematic representation of A) heteroduplex AgNO3 visualization (12% 

polyacrylamide gel supplemented with 7.5% urea) and electropherogram of the novel variant, 

IVS2-65delA, identified in the CYBRD1 gene [electropherograms: red thymidine (T), blue 

cytidine (C), green adenosine (A), black guanosine (G)] Arrows indicate: aberrant bands 

(HEX-SSCP); point of variation (electropherograms), N = homozygous wild-type, He = 

heterozygous banding pattern 
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Figure 3.5 
 
A) 3’UTR+26delACGTCACGTTTCAAAACTA 
 
        N        He 

               
 

Legend to figure 3.5 Schematic representation of A) single-stranded conformation 

polymorphism, AgNO3 visualization (12% polyacrylamide gel supplemented with 7.5% urea) 

and electropherogram of the novel variant, 3’UTR+26delACGTCACGTTTCAAAACTA, 

identified in the 3’ untranslated region of the CYBRD1 gene [electropherograms: red 

thymidine (T), blue cytidine (C), green adenosine (A), black guanosine (G)] Arrows indicate: 

aberrant bands (HEX-SSCP); point of variation (electropherograms), N = homozygous wild-

type, He = heterozygous banding pattern 

 

HJV gene 

 

Analysis of the HJV gene identified variants within exons three and four. This included a 

novel deletion, 219delG (exon three) (refer to Figure 3.6), and two previously identified 

single base pair variants namely S264 and A310G (exon four). The single base pair deletion 

219delG, that results in the substitution of Valine with Tryptophan (amino acid codon 73), 

was observed in two heterozygous Caucasian patients whilst the S264 and A310G variants 
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were observed in one patient of the Caucasian population, heterozygous for both variants. The 

S264 variant changes a G to C at nucleotide position 663 (g.663G→C), causing a 

synonymous substitution (Serine). The A310G variant shows a transition from C to G at 

nucleotide position 928 (g.928C→G) resulting in the amino acid substitution of Alanine with 

Glycine. 

 
Figure 3.6 
 
A) 219delG 
 
 
      He     N 

            
 

Legend to figure 3.6 Schematic representation of A) single-stranded conformation 

polymorphism, AgNO3 visualization (12% polyacrylamide gel supplemented with 7.5% urea) 

and electropherogram of the novel deletion, 219delG, in the HJV gene [electropherograms: 

red thymidine (T), blue cytidine (C), green adenosine (A), black guanosine (G)] Arrows 

indicate: aberrant bands (HEX-SSCP); point of variation (electropherograms), He = 

heterozygous banding pattern, N = homozygous wild-type 
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Gene-gene interaction and genotype-phenotype correlations 

 

Individual variants were statistically compared to allow for identification of potential gene-

gene interaction (Butt et al. 2003). However, the analysis performed showed no statistically 

significant associations (data not shown). 

 

Genotype-phenotype analysis involved stratification of patients according to both ethnicity 

and their specific serum iron and ferritin levels. This clinical data (iron parameters) could not 

be obtained for the control samples and comparison was performed between the stratified 

patient groups. The serum iron reference range of 6.60-30.40 µmol/L (as determined by the 

routine diagnostic lab where the blood analysis was done) was considered. Subsequently, the 

investigation of genotypes and iron entailed the comparison of patients with relatively lower 

serum iron levels (6.60-14.5 µmol/L) to patients with relatively average (14.6-22.44 µmol/L) 

and relatively higher (22.45-30.40 µmol/L) serum iron levels, respectively (individual patient 

serum iron levels not shown). There were no Coloured patients showing relatively higher iron 

serum levels and only the remaining two groups were compared (relatively lower serum iron 

compared to relatively average serum iron levels). Statistical analysis did not reveal 

significant differences in genotype/allele frequency representation within one group relative 

to the other.  

 

The ferritin reference range of 10-290 µmol/L (as determined by the routine diagnostic lab 

where the blood analysis was done) served as guideline for the placing of patients (ethnicity 

considered) in groups showing relatively lower (12-105 µmol/L), relatively average (106-198 

µmol/L) and relatively higher (199-291 µmol/L) ferritin levels (individual patient ferritin 
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levels not shown). The majority of the patient group showed relatively lower levels, with the 

exception of six cases (109 µmol/L, 129 µmol/L, 137 µmol/L, 169 µmol/L, 190 µmol/L, 

above the reference range: 321 µmol/L). No variant, present in only one of the two groups 

(patients showing either relatively average or higher ferritin levels) or within the extreme 

‘above the reference range’ case, explaining the exclusion of the six patients from the 

majority, was observed. Patient groups were not statistically compared due to the minority 

representation of relatively average and relatively higher ferritin levels. 

 

The final analysis entailed examination of the iron range represented by each genotype of a 

single variant. Observed differences in iron levels with respect to variant status (heterozygous, 

homozygous mutant or homozygous wild-type) would potentially indicate variant association 

with relatively lower, average or higher iron levels. This, in turn, could suggest or discard 

variant contribution to disease. However, stratification of patients delivered groups 

represented by only few individuals and the small values were not further compared. Also, 

statistical analysis for all the abovementioned stratifications did not reveal any statistically 

significant associations. 

 

3.5 DISCUSSION 

 

The genetic variation identified within this study included both intronic and exonic single 

nucleotide substitutions and deletions. The total of 19 variants identified included four novel, 

variants: IVS4-53G→A (HFE), IVS2-65delA (CYBRD1), 

3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) and 219delG (HJV). The remainder 

of the group consisted of seven intronic and eight exonic known single nucleotide variants 
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(HFE: IVS2+4T→C, IVS4+48G→A, IVS4-44T→C, IVS5-47G→A; SLC40A1: IVS1-

24G→C; CYBRD1: IVS1-4C→G, IVS2+8T→C; HFE: H63D, C282Y; SLC40A1: I109, 

V221; HAMP: G71D; CYBRD1: S266N; HJV: A310G, S264). 

 

Detection of seven of the variants was restricted to only the patient group of the Caucasian 

population (IVS4-53G→A (HFE), G71D (HAMP), IVS2-65delA (CYBRD1), 

3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1), 219delG (HJV), A310G (HJV) and 

S264 (HJV). These possible disease-causing mutations (potentially contributing to the 

dysregulation of iron and consequently the development of MS) were identified in eight of 33 

(24%) Caucasian patients and it included all the novel variants detected in this study. The 

variants will subsequently be discussed as either novel or previously characterized. 

 

A total of four novel variants were characterized (only in the Caucasian population) in this 

investigation including an intronic variant in the HFE gene, IVS4-53G→A (one of 33 

Caucasian patients), two intronic deletions in the CYBRD1 gene, IVS2-65delA (two of 32 

Caucasian patients) and 3’UTR+26delACGTCACGTTTCAAAACTA (one of 31 Caucasian 

patients), and an exonic deletion in the HJV gene, 219delG (two of 33 Caucasian patients).  

 

The novel variant, IVS4-53G→A (HFE), is suggested to alter a constitutive acceptor site, 

according to information generated with the Alternative Splice Site Predictor (ASSP). 

Although the variant frequency did not show significance within this study population, 

screening of a larger cohort and functional analysis will allow for elucidation of its exact, if 

any, contribution to disease development.  
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ASSP was further used to analyse the intronic deletion, IVS2-65delA (CYBRD1). All the 

donor and acceptor sites present within the normal intronic sequence were also present upon 

analysis of the variant sequence. However, the donor and acceptor sites succeeding the 

deleted position are located at a base pair later compared to their positions within the normal 

sequence and this could alter splicing of the mRNA. 

 

The 3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) deletion is positioned in the 3’-

untranslated (3’-UTR) region of the CYBRD1 gene. Polyadenylation, addition of a poly(A) 

tail to mRNA, is dependent on signal sequences located within the 3’-untranslated region (5’-

AAUAAA-3’, ‘GU’ rich region). The deletion is thus suggested to affect the polyadenylation 

process and failure to add the poly(A) tail may affect the mRNA stability and initiation of 

translation (Brown 2002). Future studies should be done to determine the functional 

significance of this deletion.  

 

The HJV gene, 219delG variant causes a frameshift resulting in synthesis of a protein with the 

incorrect amino acid sequence (Brown 2002). Also, the variant is suggested to create a 

premature stop codon resulting in truncation of the protein. Investigation with the ESE finder 

(Cartegni et al. 2003) showed altering of all SF2/ASF sites, indicating that normal splicing 

could also be disrupted. The suggested result is a mutated protein and analysis to determine 

the functional consequence of the deletion should include the protein truncation test (PTT) 

(Den Dunnen and Van Ommen 1999). 
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The analysis of gene-gene interaction and genotype-phenotype correlations did not prove 

statistically significant. These interactions warrant further investigation in a larger cohort that 

will ensure improved representation of the variants identified. 

 

Limitations as to the number of MS studies that have focused on the South African population 

and more specifically the genes examined in this study, proves comparison thereof 

exceedingly difficult. In keeping with this study’s hypothesis of a potential iron involvement 

in MS development, comparisons can be made a) with research focused on other diseases 

related to iron disorder e.g. haemochromatosis and b) to the genotype frequencies within other 

populations, by utilizing the HAPMAP database. The variation in allele frequencies amongst 

studies can be attributed to randomness of cohort choice, differences in cohort stratification 

including size, ethnicity and gender, and varying degrees of sensitivity of the techniques used 

for screening. Alternatively, differences in allele frequencies, established upon comparison 

with studies similar in cohort demographics, may be indicative of variant contribution to 

disease development. This comparative analysis will be discussed briefly within the 

subsequent description of known variants, identified within this study. In some instances, the 

literature provided limited or no Coloured population studies. Those variant frequencies were 

then compared to those found in Caucasian-based research. African Negro is included in the 

mixed ancestry of the Coloured population and the latter was compared to the HAPMAP 

population of ‘Sub-Saharan Africa’ (de Villiers et al. 1999). 

 

This study identified a total of seven known intronic variants, present within the genes HFE 

(IVS2+4T→C, IVS4+48G→A, IVS4-44T→C, IVS5-47G→A), SLC40A1 (IVS1-24G→C) 

and CYBRD1 (IVS1-4C→G, IVS2+8T→C) (Beutler and West 1997, Totaro et al. 1997, 
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Devalia et al. 2002, Zaahl et al. 2004). Intronic variants have the potential to affect the 

splicing of mRNA (Pagani and Baralle 2004, Krawzack et al. 2006). Development of human 

inherited disease due to splicing abnormalities, can be attributed to a range of variants and 

according to the Human Gene Mutation Database (HGMD), single base-pair substitutions, 

specifically located within splice junctions, represent an estimated 9.5% thereof (Stenson et 

al. 2003, Krawczak et al. 2006). 

 

The IVS2+4T→C variant in the HFE gene has been described as a polymorphism with 

reverse transcriptase-PCR analysis thereof indicating that mRNA splicing is unaffected by its 

presence (Christiansen et al. 1999). This variant has been observed in various studies 

investigating haemochromatosis including analysis of the South African population. Allele 

frequencies of one such a Caucasian based study, established the variant allele frequency at 

0.38 in the patient group and 0.25 in the controls (de Villiers et al. 1999). An additional 

Caucasian, haemochromatosis study established allele frequencies of 0.39 in their patients and 

0.31 in their controls (Zaahl et al. 2004). Findings within this study proved contradictory, 

with lower allele frequencies observed in the patient groups and higher frequencies 

determined for the control groups (Caucasian: patient group = 0.25; control group = 0.37 and 

Coloured: patient group = 0.3; control group = 0.45). The observed dissimilarity in patient 

frequencies could be attributed to the studies’ investigating different diseases. The 

comparison of Coloured to Caucasian, as performed here, is not ideal and may further explain 

the variation. Alternatively, the findings in this study of lower frequency within the patient 

group compared to the controls, may suggest the non-significant role of this variant in the MS 

population.  
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The known IVS4+48G→A variant (Totaro et al. 1997) does not affect a splice-site consensus 

sequence within intron four of the HFE gene. Combined heterozygosity for the polymorphism 

and the C282Y allele, shows transferrin saturation levels that fall within the normal range, 

indicating that it may hold no significance at a functional level (Jeffrey et al. 1999). The 

C282Y variant has been associated with the iron overload disease, haemochromatosis and is 

described in subsequent paragraphs as one of the single nucleotide variants identified in this 

study. The Caucasian patient group was characterized by variant allele frequency of 0.44 

whilst the control group frequency was an estimated 0.49. The Coloured patient (0.36) and 

control (0.37) groups showed similar allele frequencies. The frequencies determined in this 

study proved higher than those observed for HAPMAP (absent in European population, Sub-

Saharan Africa: 0.029).  

 

Intronic variants IVS4-44T→C, IVS5-47G→A, IVS1-24G→C, IVS1-4C→G and 

IVS2+8T→C were subjected to Alternative Splice Site Predictor (ASSP) analysis. The data 

generated, did not identify functional significance for any of the known intronic variants with 

regards to splice-site recognition sequence alteration. However, variants affecting the splicing 

process are not positionally limited to splice sites but may affect the regulatory elements such 

as ‘enhancers’ and ‘silencers’. The regulatory elements may be positioned within exons or 

introns at varying distances from splice sites (Pagani and Baralle 2004).  

 

The allele frequencies for the IVS4-44T→C variant within the Caucasian population were 

lower (Caucasian: patients = 0.05, controls = 0.01) and in the Coloured group, conversely, 

higher (Coloured: patients = 0.14, controls = 0.13) compared to the frequencies of a South 

African population based hemocromatosis study (Zaahl et al. 2004) (Caucasian: patients = 

0.10, controls = 0.06).  

   66



                                                                                                                        CHAPTER THREE 

The IVS5-47G→A variant allele was observed at frequencies of 0.41 and 0.64 within the 

Caucasian and Coloured patient groups, respectively. The control groups showed frequencies 

of 0.48 (Caucasian) and 0.56 (Coloured). Frequencies were compared to HAPMAP 

(Caucasian = 0.47) and a South African haemochromatosis study (Zaahl et al. 2004) 

(Caucasian: patient group = 0.50; control group = 0.46). This study indicated relatively higher 

Coloured and lower Caucasian variant frequencies. The lower Caucasian value of this study 

may indicate that the variant is not contributive to MS however the differences could be 

explained by comparison to a haemochromatosis study. The higher Coloured cohort 

frequencies may stem from its comparison to the Caucasian group.  

 

Modest variation was observed upon comparison of allele frequencies, for the IVS1-24G→C 

variant, between this investigation (Caucasian: patients = 0.80, controls = 0.82; Coloured: 

patients = 1.00, controls = 0.72) and the South African haemochromatosis study (Zaahl et al. 

2004) (Caucasian: patients = 0.84, controls = 0.88). Both the studies show relatively high 

allele frequencies in both the patient and control groups and this may indicate that the variant 

is common in all populations, not contributing to disease. 

 

The allele frequencies of IVS1-4C→G and IVS2+8T→C, were compared to the frequencies 

observed in the haemochromatosis study in which these variants were characterized as novel. 

The allele frequencies determined in this study were higher for all populations (IVS1-4C→G 

(Caucasian: patients = 0.18, controls = 0.10; Coloured: patients = 0.21, controls = 0.04); 

IVS2+8T→C (Caucasian: patients = 0.81, controls = 0.86; Coloured: patients = 0.90, controls 

= 0.83). The Zaahl et al. (2004) study showed a) presence of IVS1-4C→G in only the 

Caucasian patient group (0.03), and b) IVS2+8T→C in both the Caucasian patient (0.67) and 
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control group (0.64). The frequencies identified for the variants were relatively low but still 

higher than those observed in the comparative study suggesting it be researched further. The 

presence of the IVS1-4C→G in the Coloured group of this study but absence thereof from the 

Zaahl et al. (2004) study should also be considered. 

 

The entire group of single nucleotide polymorphisms detected in this study have been 

characterized previously. It includes the HFE gene variants H63D (Feder et al. 1996) and 

C282Y (Feder et al. 1996), the SLC40A1 gene variants I109 (Zaahl et al. 2004) and V221 

(Devalia et al. 2002), a single variant in the HAMP gene namely G71D (Merryweather-Clarke 

et al. 2003), the CYBRD1 gene variant S266N (McKie et al. 2001) and two variants within the 

HJV gene: A310G and S264 (Lee et al. 2004). 

 

Variant H63D is characterized by an amino acid change from Histidine to Aspartate. The 

residue affected by the nucleotide change is located in a loop within the α1 domain. Histidine 

normally interacts and forms a salt bridge with Aspartate (Asp-73) but the substitution from 

basic to acidic is suggested to disrupt the side by side positioning of the two residues. It is 

proposed to disturb bridge formation and affect the loop arrangement locally without altering 

the protein fold. The normal function of the HFE gene is related to binding of transferrin 

receptor 1 (TFR1) and an accompanying decrease in TFR1 affinity for transferrin (Tf) 

binding. The H63D variant still allows for the reduction in affinity, but to a lesser degree than 

seen in the case of the normal HFE protein (Feder et al. 1996, Parkkila et al. 1997, Feder et 

al. 1998, Lebron et al. 1998, Drakesmith et al. 2002, OMIM +235200). The calculated variant 

allele frequencies (Caucasian: patients = 0.14, controls = 0.09; Coloured: patients = 0.07, 

controls = 0.21) were all marginally higher, with the exception of the Coloured patient group, 
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than those observed in the Kotze et al. (2005) study that investigated MS within a group of 

South African Caucasians (Caucasian: patients = 0.12, controls = 0.08). Similar to this study, 

their patient variant frequency did not indicate significance when compared to their control 

value. 

 

The C282Y mutation shows the amino acid change from Cysteine to Tyrosine. The sulphur-

containing residue affected by the mutation is located in the α3 domain where it forms 

disulfide bonds with a further Cysteine (Cys-203) residue. HFE normally interacts with the 

β2m light chain to allow for expression at the cell surface. Replacement of the Cysteine with 

the aromatic ring containing Tyrosine hinders this interaction and the eventual cell surface 

expression. When C282Y is present, HFE cannot bind TFR and bring about the reduction in 

affinity between the latter and the Fe-Tf complex (The Medical Biochemistry page, Feder et 

al. 1996, Feder et al. 1997, Feder et al. 1998, Lebron et al. 1998, OMIM +235200).  

 

A more recent study describes analysis of the HFE gene variants C282Y and H63D within 

MS patients from both Croatia and Slovenia (Ristić et al. 2005). Genotype comparison of 

patients with ethnically matched controls revealed no significance. Further genotype 

comparisons, made with respect to the different MS subtypes a) between the different types 

within the patient group and b) between the patient and control population for the respective 

sub-groups, also proved insignificant. However, the genotype combination C282Y/wild-type, 

showed a significant relationship with earlier onset of the disease compared to the other 

genotypes studied, with the authors suggested further analysis thereof within a larger patient 

group. This current investigation determined variant allele frequencies of 0.06 (patients) and 

0.06 (controls) less than the frequency obtained from HAPMAP (European population = 
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0.958). Similar to this study, Zaahl et al. (2004) detected the variant solely within the 

Caucasian group and this was established at relatively higher frequencies (patients = 0.08 and 

controls = 0.10). An MS study (South African Caucasian population) also detected higher 

frequencies compared to the values identified in this study (patients = 0.09, controls = 0.10) 

but similarly their statistical analysis thereof did not prove significant (Kotze et al. 2005). 

Contrary to this study, Rubio et al. (2004) indicated a higher frequency of the C282Y variant 

within their patient group compared to the controls and suggested that the variant could be in 

linkage disequilibrium with factors involved in the development of MS. 

 

HAMP gene variant, G71D, is characterized by the amino acid change from Glycine to 

Aspartic acid. The variant is localized between two Cysteine residues within the first β 

pleated sheet of the protein molecule. It is suggested to affect the protein structure and hence 

activity level due to the amino acid change from a neutral residue to an acidic, charged one 

(Merryweather-Clarke et al. 2003). The variant G71D was identified at a low frequency in 

only the Caucasian patient group (0.03), however, the variant allele prevalence was notably 

higher compared to the general population frequency (0.001) established in the 

Merryweather-Clarke et al. (2003) study. 

 

The CYBRD1 gene variant, S266N, shows the change from the polar, hydrophilic Serine to 

the polar, uncharged Asparagine. The allele frequencies of the variant, within this study, 

includes Caucasian: patients = 0.69; controls = 0.79 and Coloured: patients = 0.86; controls = 

0.69. Zaahl et al. (2004) identified higher frequencies (Caucasian: patients = 0.76, controls = 

0.86) with the exception of this study’s Coloured patient group. HAPMAP values included a 

European population frequency of 0.271 and Sub-Saharan African population frequency of 
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0.042. Comparison to the HAPMAP values showed remarkably higher frequencies in this 

study. The higher variant prevalence within the Coloured patient group of this study, suggests 

that it could increase risk of MS although statistical evaluation did not prove significant. The 

higher Caucasian frequencies of the Zaahl et al. (2004) study could be because of the 

difference in disease investigated and techniques used for detection. Alternatively, this 

suggests the variants to be insignificant in MS development. However, the value is higher 

than the HAPMAP population and further research in a larger cohort is needed to clarify these 

contradictory findings.  

 

The HJV gene variant A310G results in the amino acid change from Alanine to Glycine (Lee 

et al. 2004). Both the amino acids are non-polar and hydrophobic, suggesting that the variant 

may have no effect at the structural level (The Medical Biochemistry page). The allele 

frequency determined for the A310G within this study (0.02) was equal to the low frequency 

of 0.02 established for the variant within an African American population (Barton et al. 

2004). 

 

This study identified a total of three known synonymous single base variants in which the 

identified change does not result in an amino acid substitution.  It includes variants, I109 

(Zaahl et al. 2004) and V221 (Devalia et al. 2002) detected in the SLC40A1 gene and S264 

identified in the HJV gene. These polymorphisms may nonetheless contribute to disease 

development with an estimated half of all single nucleotide polymorphisms, causing human 

disease, resulting in splicing defects (Cartegni et al. 2003). 
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The allele frequencies determined for the I109 variant in this study included 0.07 in the 

Coloured patient group and 0.04 in the ethnically matched, control population. Variant V221 

was detected within both the Caucasian and Coloured groups (Caucasian: patients = 0.75, 

Caucasian: controls = 0.68; Coloured: patients = 0.93, controls: 0.67). S264 was detected at a 

frequency 0.02 within only the Caucasian patient group. Zaahl et al. (2004) identified I109, in 

the Caucasian patient group (0.008) and V221 in both the Caucasian patient (0.21) and control 

groups (0.08). This study thus detected these polymorphisms at higher frequencies and this 

suggests that further research be done. 

 

The cohort was sufficient in size (patients: 40, controls: 70) for the projected aims of this pilot 

study. It delivered insight as to a) the identification of variants potentially involved in MS 

development and b) further provided baseline data with regards to variant frequency.  A larger 

sample size will allow for more informative statistical analysis, providing a more specific 

value of variant frequency within the South African population and subsequent elucidation of 

variant contribution. 

 

Representation of ethnicity seen within the South African population was partly achieved with 

inclusion of 33 Caucasian and seven Coloured patients. Individual statistical analysis was 

performed for the Caucasian and Coloured groups respectively.  The values obtained provided 

a general impression of variant presence and frequency within the relevant South African 

ethnic groups. Obtaining more descriptive data would require improvements as to population 

representation. It would entail a) a more equal distribution of each group e.g. 50 Caucasian, 

50 Coloured and b) inclusion of the other ethnic groups within South Africa.  
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The variants potentially associated with MS could a) be associated with a specific type of the 

disease or b) may contribute equally to all the classified subtypes. These variables could be 

addressed by studies with large sample sizes that include all the subtypes or alternatively the 

variables could be reduced by the choice of a homogenized patient group including a single 

MS sub-type. This pilot study investigated a smaller sample size of only relapsing-remitting 

multiple sclerosis (RRMS) patients. 

  

Relapsing-remitting MS predominately affects females [female to male ratio of 2:1]. Similarly 

this study included a gender majority of females within both the patient and control groups 

(patient gender ratio of 5:1; control gender ratio of 4:1).  

 

A total of three techniques, including Heteroduplex Single-Stranded Conformation 

Polymorphism (HEX-SSCP), restriction enzyme digestion and semi-automated DNA 

sequencing analysis, were used to allow for detection and verification of variants.  

 

The HEX-SSCP technique allowed for visual detection of conformational variation. The 

technique, however, does not provide 100% sensitivity and additional restriction enzyme 

digestion was subsequently done for the variants identified in the HFE gene, exon two b 

(IVS2+4T→C) and the CYBRD1 gene, exon four b (S266N) (refer to Figure 3.3). HEX-SSCP 

analysis of the remaining exons delivered satisfactory visualization. All the variants detected 

in this study were subjected to semi-automated DNA sequencing analysis to allow for 

verification and characterization. However, the technique accuracy may be reduced due to 

human error and Taq polymerase misincorporation mistakes (Clarke and Whittam 1992). 
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 Successful PCR amplification and subsequent screening of 22 control samples for the IVS2-

65delA variant, proved challenging and troubleshooting thereof was ineffective. The binding 

site of the primer (forward) is located in close proximity to the deleted position, identified 

within the patient group and this could account for the incomplete amplification of the control 

population. 

 

The clinical data collected for this study included the two parameters namely iron and ferritin 

serum levels. Iron serum is characterized by diurnal fluctuations and is affected by factors 

such as menstruation and pregnancy. The levels are further known to decrease in response to 

inflammation and infection that may be unrelated to the disease under investigation (Borch-

Iohnsen 1995). Similarly, ferritin is affected by factors such as inflammation, infection, 

gender and age (Cook et al. 1992, Borch-Iohnsen 1995). Transferrin receptor level estimates 

however are not influenced by infection and inflammation (Cook et al. 1992, Borch-Iohnsen 

1995).  Inclusion of more than the two parameters collected in this study may provide a more 

accurate estimation of iron status and so deliver improved insights as to the full extent of the 

iron imbalance. A limitation imposed on this investigation was the unavailability of control 

individuals’ iron serum and ferritin levels, required for statistical comparison. Financial 

constraints and the hampered recall of control individuals did not allow for the collection 

thereof.  
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CHAPTER FOUR 

 

4. CONCLUSIONS AND FUTURE PROSPECTS 

 

Multiple sclerosis is a debilitating disease characterized by the loss of neurological function. 

The symptoms of the disease, that mainly affects young adults, include sensory disturbances, 

gait ataxia and fatigue. Individuals affected by multiple sclerosis thus experience a marked 

decrease in their quality of life. Research attempting to elucidate the complex etiology of this 

multifactorial disorder, has addressed the potential contributions of iron, autoimmunity, 

pathogenic infection and genetics.  MS research focused on the South African population and 

more specifically, the involvement of iron and genetics in the occurrence of MS within this 

population is relatively limited. This study attempted to investigate the role of iron and the 

genes related to iron metabolism within a South African cohort. 
 

The first aim of this study was to identify variants that could prove to be contributors to 

and/or markers of disease. The genes screened included HFE, solute-carrier family 40 (iron 

regulated transporter) member 1 gene (SLC40A1), hepcidin anti-microbial peptide (HAMP), 

cytochrome b reductase 1 (CYBRD1) and hemojuvelin (HJV). A total of 19 variants of which 

four were novel: IVS4-53G→A (HFE), IVS2-65delA (CYBRD1), 

3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) and 219delG (HJV), were 

identified. The remainder comprised of seven intronic variants and eight exonic single 

nucleotide variants. Seven of the variants (including all the novel variants identified) namely 
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IVS4-53G→A (HFE), G71D (HAMP), IVS2-65delA (CYBRD1), 

3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1), 219delG (HJV), A310G (HJV) and 

S264 (HJV), were identified only in the Caucasian patient group and in no control individuals. 

These findings did not prove statistically significant, however, the presence thereof in the 

patient population alone, highlights its potential contribution to the development of MS and 

thus warrants further investigation. 

 

The second aim of this investigation included statistical analysis of variant frequency within 

the patient group compared to the control population. Additional analysis attempted to 

identify linkage disequilibrium and/or gene-gene interaction between the variants identified. 

The final examination was aimed at establishing genotype-phenotype correlations with the 

serum iron and ferritin levels determined for the patient population. 

 

Statistical analysis for both a) individual variants and b) variant combinations (gene-gene 

interaction and linkage disequilibrium) (data not shown) did not prove significant. This could 

be attributed to small sample size or alternatively the variants identified in this study could be 

in linkage disequilibrium or show gene-gene interaction with other disease-causing loci. Some 

of the genotype-phenotype investigations were restricted due to small sample size whilst the 

remainder did not deliver statistically significant results. Future studies should thus aim to 

analyse these variants in a larger cohort. This could be done in conjunction with screening 

both a) the promoter regions (HFE, SLC40A1, HAMP, CYBRD1 and HJV) and additional 

genes related to iron metabolism e.g. Transferrin receptor 2 (TFR2) and Ceruloplasmin (CP).  
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The four novel IVS4-53G→A (HFE), IVS2-65delA (CYBRD1), 

3’UTR+26delACGTCACGTTTCAAAACTA (CYBRD1) and 219delG (HJV) variants have 

suggested functional significance and although only seen in a minority of cases, it may 

contribute to the MS etiology. The single patient heterozygous for the IVS4-53G→A variant 

showed iron and ferritin levels categorized as relatively ‘low’ according to the respective 

reference ranges chosen for this study (van Rensburg et al. 2006). The two individuals 

presenting as heterozygous for the IVS2-65delA variant were also characterized as having 

relatively ‘low’ ferritin whilst one individual showed ‘low’ and the second ‘average’ iron 

levels. The deletion, IVS2-65delA, was detected in two patients of whom one was classified 

as ‘low ferritin level’. The second deletion 3’UTR+26delACGTCACGTTTCAAAACTA was 

identified in a single Caucasian patient showing ‘average’ iron and low ‘ferritin’. This study 

did not prove these observations to be significant but a larger cohort may deliver insight as to 

the contribution of these novel variants. Future aims should include elucidation of variant 

effect by means of functional analysis of the novel variants identified within this study e.g. 

PTT, murine ‘knockout’ studies, protein expression comparisons (wild-type vs. variant) and 

RNA studies (reverse transcriptase-PCR analysis). 

 

Several of the known variants identified have functional significance in haemochromatosis. 

This suggests that these variants may contribute to MS development seeing as it too is 

suggested to be a disease of iron disorder. Comparisons with a number of studies indicated 

higher frequency within this investigation of the following variants: IVS4+48G→A (Coloured 

patient group), IVS4-44T→C (Coloured patient group), IVS5-47A→G (Coloured patient 

group), IVS1-24G→C (Coloured patient group), IVS1-4C→G (both Caucasian and Coloured 

patient groups), IVS2+8T→C (both Caucasian and Coloured patient groups), H63D 
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(Caucasian patient group), S266N (both Caucasian and Coloured patient groups), I109 

(Coloured patient group) and V221 (both Caucasian and Coloured patient groups). These 

observations may be the result of the small Coloured cohort size and comparison of the 

Coloured population to other Caucasian studies. Conversely, study of a larger cohort could 

indicate these variants to be significant as individual or combined contributors to MS disease 

and future research should aim to investigate these observations further. 

 

The study thus succeeded in identification of variants but failed to determine their 

significance in the development of MS. However, as a pilot study, with a relatively small 

cohort, the variant non-significance seen here may be disproved and further characterized by 

means of further research in larger populations. 

 

The differences observed upon comparison of the identified variants to the frequencies within 

other studies could be attributed to failure of the techniques utilized, to detect all the relevant 

variation and future aims should include screening for novel and/or known variants by means 

of denaturing high performance liquid chromatography (dHPLC) or a similar sensitive 

technique. The technique provides a sensitivity of 92-100% and allows for screening of larger 

fragments (198-732 bp) than the HEX-SSCP technique utilized in this study. The SSCP 

component is characterized by sensitivity of 70-100% (130-250 bp sized fragments) (Xiao 

and Oefner 1992, Bonner and Ballard 1999), although the variant detection rate of this study 

was improved by the additional analysis of the heteroduplexes (HEX-SSCP). Furthermore, 

restriction enzymes could be used (where possible) to screen for the known variants identified 

in this study’s cohort within a larger sample size. The digestion technique is less time 

consuming compared to HEX-SSCP screening method. 
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A further limitation pertaining to techniques used in this study included unsuccessful PCR 

amplification of the control group upon screening of the IVS2-65delA (CYBRD1) variant. The 

forward primer binds close to the deletion site and may explain the failure of control sample 

amplification. Future studies should aim to redesign a primer with a binding site further from, 

but still including, the variant position. 

 

General improvements as to choice of cohort should be addressed in future studies. A larger 

cohort size would potentially a) ensure that all control groups conform to the requirements of 

Hardy-Weinberg equilibrium, b) generate values sufficient in size for further statistical 

analysis and c) provide a more accurate estimation of variant frequency within the South 

African population. The control group should be fully characterized in terms of iron, ferritin 

and additional clinical evidence e.g. transferrin receptor levels, to allow for statistical 

comparison to the patient groups. Patient information relating to age of onset, neurological 

evaluation according to a disability scale e.g. Expanded Disability Status Scale (the EDSS; 

Kurtzke 1983) and relevant personal information could be included in future investigations.  

 

Stratification of the cohort according to sub-type of MS disease investigated, ethnicity and 

gender ratio will contribute to identification of meaningful results. 

 

The primary shortcomings of this investigation included small cohort size and failure to 

determine iron and ferritin levels for the control population. However, the study enriches our 

knowledge of MS and its possible underlying genetic component within the South African 

population. This investigation allowed for identification of variants that could potentially, 
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when investigated in a larger, stratified study, prove to be contributors to and/or valuable 

markers of MS disease.  
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Table 3.1 Allele frequencies of the variants identified within this study 

Gene Exon/ 

Abbreviations: CPMS Caucasian MS patient group, CC Caucasian control group, MPMS 
Coloured MS patient group, MC Coloured control group, 2n total alleles (variation amongst 
variants according to the sample total successfully amplified), aAllele frequency of 
polymorphic allele denoted, bIdentified in both heterozygous and homozygous state, 
cIdentified only in heterozygous state, dVariants identified only in the patient group, 
*Probablity values determined for the allele frequencies 

Intron 
Variant Allele frequenciesa Allele frequenciesa

   CPMS CC MPMS MC 
   (2n=66) (2n=100) (2n=14) (2n=38) 

HFE 2 H63Dc (Feder et al. 1996) 0.14 0.09 0.07 0.21 
   (2n=64) (2n=98) (2n=12) (2n=38) 
 2 IVS2+4T→Cb (Beutler and West 1997) 0.25 0.37 0.3 0.45 
   (2n=60) (2n=86)   
 4 C282Yb (Feder et al. 1996) 0.06 0.06 - - 
   (2n=66) (2n=98) (2n=14) (2n=38) 
 4 IVS4+48G→Ac (Totaro et al. 1997) 0.44 0.49 0.36 0.37 
   (2n=66) (2n=98)   
 4 IVS4-53G→Ac, d (This study) 0.02 - - - 
   (2n=66) (2n=98) (2n=14) (2n=38) 
 4 IVS4-44T→Cc (Beutler and West 1997) 0.05 0.01 0.14 0.13 
   (2n=66) (2n=98) (2n=14) (2n=34) 
 5 IVS5-47G→Ab (Beutler and West 1997) 0.41 0.48 0.64 0.56 
   (2n=64) (2n=78) (2n=12) (2n=18) 

SLC40A1 1 IVS1-24G→Cb (Devalia et al. 2002) 0.80 0.82 1.00 0.72 
     (2n=14) (2n=26) 
 4 I109c (Zaahl et al. 2004) - - 0.07 0.04 
   (2n=48) (2n=82) (2n=14) (2n=24) 
 6 V221b (Devalia et al. 2002) 0.75 0.68 0.93 0.66 
   (2n=58)    

HAMP 3 G71Dc, d (Merryweather-Clarke et al. 2003) 0.03 - - - 
   (2n=66) (2n=86) (2n=14) (2n=24) 

CYBRD1 1 IVS1-4C→Gb (Zaahl et al. 2004) 0.18 0.10 0.21 0.04 
   (2n=66) (2n=86) (2n=14) (2n=24) 
 2 IVS2+8T→Cb (Zaahl et al. 2004) 0.81 0.86 0.90 0.83 
   (2n=64)    
 2 IVS2-65delAc, d (This study) 0.03 - - - 
   (2n=62) (2n=78) (2n=14) (2n=36) 
 4 S266Nb (McKie et al. 2001) 0.69 0.79 0.86 0.69 
   (2n=62)    

 4 
3’UTR+26delACGTCACGTTTCAAAACTAc 
(This study) 0.02 - - - 

   (2n=66)    
HJV 3 219delGc, d (This study) 0.03 - - - 

   (2n=64)    
 4 S264c, d 0.02 - - - 
   (2n=64)    
 4 A310Gc, d (Lee et al. 2004) 0.02 - - - 
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