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A B S T R A C T

Background: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning
model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional
magnetic resonance (MR) images.
Methods: Preoperative MR images were retrospectively obtained from 272 patients with primary grade II/III
gliomas. The patients were randomly allocated in a 2:1 ratio to a training (n = 180) or validation (n= 92) set. A
total of 431 radiomic features were extracted from each patient. The lest absolute shrinkage and selection op-
erator (LASSO) method was used for feature selection and radiomic signature construction. Subsequently, a
machine-learning model to predict p53 status was established using the selected features and a Support Vector
Machine classifier. The predictive performance of all individual features and the model was calculated using
receiver operating characteristic curves in both the training and validation sets.
Results: The p53-related radiomic signature was built using the LASSO algorithm; this procedure consisted of
four first-order statistics or related wavelet features (including Maximum, Median, Minimum, and Uniformity), a
shape and size-based feature (Spherical Disproportion), and ten textural features or related wavelet features
(including Correlation, Run Percentage, and Sum Entropy). The prediction accuracies based on the area under
the curve were 89.6% in the training set and 76.3% in the validation set, which were better than individual
features.
Conclusions: These results demonstrate that MR image texture features are predictive of p53 mutation status in
lower-grade gliomas. Thus, our procedure can be conveniently used to facilitate presurgical molecular patho-
logical diagnosis.

1. Introduction

Lower-grade gliomas (World Health Organization grade II/III
gliomas) are diffusely infiltrative tumors that originate most often in
the cerebral hemispheres of adults (Zhang and Brat, 2016). For a cen-
tury, glioma diagnosis has been based on histologic appearance, but
recent discoveries of molecular biomarkers have led to the reassessment
of diagnostic definitions and criteria (Appin and Brat, 2015).

TP53 is a pivotal gene that often mutates in diffuse gliomas and

especially in astrocytomas (Sarkar et al., 2005). TP53 encodes p53, a
transcription factor that regulates the cell cycle to suppress the pro-
liferation of cells with oncogenic properties (Gillet et al., 2014). Mutant
p53 promotes tumor cell proliferation, invasion, and survival (Muller
and Vousden, 2013), and is a critical biomarker of diffuse gliomas
(Appin and Brat, 2015; Suzuki et al., 2015). TP53 sequencing is the
primary method used to detect the p53 mutation (Gillet et al., 2014).
Immunohistochemical analyses to detect overexpression of p53 are
generally regarded as a surrogate marker for p53 mutation (Levidou
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et al., 2010). However, both methods are invasive assays based on
craniotomy.

Non-invasive detection of p53 status has been attempted. For ex-
ample, mutant p53 was found to be specifically associated with certain
tumor locations and enhancement patterns in lower-grade gliomas
based on preoperative magnetic resonance (MR) images (Mut et al.,
2007; Wang et al., 2015b). More recently, machine-learning algorithms
have been used to predict genotype based on quantitative imaging
features derived from conventional MR images (Ellingson et al., 2011;
Macyszyn et al., 2016). A series of pioneer studies have revealed that
quantitative imaging features have great potentials in predicting the
diagnosis and prognosis of diseases(Chaddad et al., 2016a; Chaddad
et al., 2016b; Chaddad and Tanougast, 2016c). Moreover, several pi-
votal glioma molecular biomarkers such as MGMT and IDH1 (Korfiatis
et al., 2016; Zhou et al., 2017) have already been predicted efficiently
with quantitative imaging features, which greatly increases the impetus
for preoperative determination of the p53 genotype.

Here, we extracted radiological features from the preoperative MR
images of patients with gliomas and we hypothesized that a machine-
learning approach to analyze radiomic signatures could predict p53
status.

2. Materials and methods

2.1. Patients

Two hundred and seventy-two patients who were treated at the
Beijing Tiantan Hospital from August 2005 to August 2012 were en-
rolled in this retrospective study. MR images and clinical information
were collected based on the Chinese Glioma Genome Atlas database
(http://www.cgga.org.cn). The inclusion criteria were as follows: 1)
histologic confirmation of primary grade II/III gliomas according to the
World Health Organization criteria; 2) no history of preoperative
therapy; 3) available preoperative T2-weighted MR images; 4) available
p53 status based on immunohistochemical detection; and 5) available
clinical characteristics. The patients were randomly allocated in a 2:1
ratio to a training (n = 180) or validation (n= 92) set. The machine-
learning model for p53 prediction was built using the training set and
evaluated using the validation set. Our study was approved and re-
viewed by the institutional review board.

2.2. MR imaging acquisition and preprocessing

T2-weighted MR images were used for the extraction of radiomics
features, as these images are well accepted in the identification of ab-
normal hyperintense signals that represent the involved regions of low-
grade gliomas (Kinoshita et al., 2016; Ricard et al., 2007; Wang et al.,
2015a). T2-weighted MR imaging of the patients was mainly performed
on a Magnetom Trio 3 T scanner (Siemens, Erlangen, Germany). The
imaging protocol is generally in consistent with the international
standardized brain tumor imaging protocol (Ellingson et al., 2015), and
the detailed parameters were as follows: 24 slices; echo time = 110 ms;
repetition time = 5800 ms; flip angle = 150 degrees; voxel si-
ze = 0.6 × 0.6 × 5.0 mm3; field of view = 240 × 188 mm2; ma-
trix = 384 × 300. Two experienced neurosurgeons delineated tumor
masks using MRIcron software (http://www.mccauslandcenter.sc.edu/
mricro). Hyperintense signals on the T2-weighted images were re-
garded as tumor areas. The Dice coefficient was used to measure the
discrepancy between tumor masks, and a senior neuroradiologist made
a final decision about the tumor border when the discrepancy was>
5%.

2.3. Quantitative radiological feature extraction and univariate analyses

Using an in-house MATLAB process, all the imaging data were
normalized (Z score transformation) before feature extraction to reduce

the bias. For each glioma case, we extracted four groups of radiological
features from volume masks as the previous study described and de-
tailed descriptions of each feature was listed in the supplementary
material of the previous study (Aerts et al., 2014). Fourteen indexes
that quantitatively described the distribution of voxel intensities were
categorized into group 1. Group 2 included eight radiological features
based on the shape and size of the tumors. Group 3 features were tex-
tural features that quantified intra-tumor heterogeneity, calculated
from gray level co-occurrence (22 indexes) and gray level run-length
(11 indexes) texture matrices. Texture matrices were determined con-
sidering 26-connected voxels. Features in group 4 were derived from
wavelet decompositions of group 1 and 3 features (376 indexes). The
original feature was decomposed into 8 decompositions, by directional
low-pass (i.e. a scaling) and high-pass (i.e. a wavelet) filtering. All
processes of feature extraction were conducted using MATLAB version
2014a, (Natick, MA, USA). Univariate analyses were performed by
using individual features to predict p53 status with receiver operating
characteristic (ROC) curve analysis in the training set. The 10-fold cross
validation was performed and then the average of the AUCs were cal-
culated.

2.4. Machine-learning model for p53 prediction

The lest absolute shrinkage and selection operator (LASSO) algo-
rithm, which is suitable for the regression of high-dimensional data
(Sauerbrei et al., 2007), was used to select the most predictive features
in the training set to prevent overfitting and improve generalization
(Huang et al., 2016). The misclassification error is determined by a
tuning parameter (Lambda). As the Lambda gets smaller, some coeffi-
cients may be shrunk towards zero (Kumamaru et al., 2016; Vasquez
et al., 2016). We then selected the Lambda for which the cross-vali-
dation error is the smallest. In this way, most of the coefficients of the
covariates are decreased to zero and the remaining non-zero coeffi-
cients are selected by LASSO. The machine-learning model predictive of
p53 was constructed based on the selected radiological features and the
support vector machine (SVM) in the training set, and was evaluated in
the validation set. The SVM classifier was based on transforming the
feature space to a high-dimensional space where a separating hyper-
plane maximized the margin between classes (Korfiatis et al., 2016);
this approach is effective for many pattern recognition problems
(Huang et al., 2017). For each patient, the SVM classifier generated an
estimated value output. ROC curve analysis was performed in both the
training and validation sets to evaluate the predictive efficiency of the
machine-learning model.

2.5. p53 immunohistochemistry

Immunoperoxidase staining for p53 mutants was conducted fol-
lowing the standard procedure described in our previous study (Wang
et al., 2015b). Briefly, formalin-fixed, paraffin-embedded tissue was cut
to 5 μm and deparaffinized, rehydrated, and incubated in tris-buffered
saline. The samples were heated in sodium citrate buffer for 10 min at
100 °C, and non-specific protein binding was blocked in 5% horse
serum in phosphate-buffered saline (PBS). Rabbit polyclonal p53 IgG
was then applied to the samples for 60 min at room temperature
(25 °C). After being washed in PBS, the tumor samples were incubated
in secondary antibody for 30 min at room temperature. The sections
were washed again and treated with Elite ABC (Vectastain; Vector La-
boratories, Burlingame, CA, USA), and washed and developed with 3,3′-
diaminobenzidine tetrahydrochloride (50 mg 3,3′-diaminobenzidine
and 150 μl 3% H2O2 in 100 ml PBS). After being rinsed in PBS, the
samples were dehydrated in graded alcohols, cleared in xylene, and
permanently covered. Two pathologists independently examined the
immunostained sections. When> 10% of positive immunostained cells
appeared in the section, the tumor was considered to be p53-mutated
(Ando et al., 2015).
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2.6. Statistical analysis

The LASSO algorithm, SVM classifier, and ROC curve analysis were
implemented in R software version 3.3.2 (The R Foundation, Salt Lake
City, UT, USA). T-statistical test and Chi-square test were used to
compare clinical characteristics between training and validation sets,
and p < 0.05 was considered statistically significant. ROC curve ana-
lysis was conducted to demonstrate the performance of the p53 pre-
dictive model, and an optimal cutoff value was identified when the
sensitivity plus specificity was maximal. The prediction accuracy and
area under the curves (AUC) were calculated for both the training and
validation sets.

3. Results

3.1. Clinical characteristics

MR images were obtained from 272 patients with primary WHO
grade II/III gliomas, including 179 with grade II (male, 106; female, 73;
age range, 4–68 years) and 93 with grade III (male, 64; female, 29; age
range, 17–71 years). The proportion of patients with a p53 mutation
was 42.2% and 48.9% in the training (n= 180) and validation
(n = 92) sets, respectively. No significant difference was found in age,
sex, grade, p53 status, or tumor location between the two sets of pa-
tients. Detailed demographic characteristics of the patients are pre-
sented in Table 1.

3.2. MRI features and univariate analyses

A total of 431 quantitative radiological features were extracted from
the images of each patient, including 14 first-order statistics, 8 shape-
and size-based features, 33 textural features, and 376 wavelet features
derived from first-order statistics and textural features. We also eval-
uated the predictive efficiency of individual features in the training set
using ROC curve analysis and 10-fold cross validation. The results
showed that AUCs of individual features were lower than the AUC of
the final machine-learning model established later (Fig. 1). All quanti-
tative radiological features and their corresponding mean AUCs after
10-fold cross validation in the training set are listed in Supplementary
Table 1.

3.3. Machine-learning model for p53 prediction

Based on the p53 mutation status, 431 radiological features ex-
tracted from T2-weighted MR images were reduced to 15 potential
predictors in the training set (Fig. 2A and B). The 15 selected predictors
were features with nonzero coefficients in the LASSO regression model,
including first-order statistics-derived wavelet features such as Max-
imum, Minimum, and Uniformity; shape- and size-based features such
as Spherical Disproportion; and textural features derived wavelet

features such as Autocorrelation, Correlation, and Run Percentage
(Table 2).

Training set. A p53 predictive machine-learning model was con-
structed using the training set based on the selected features and the
SVM classifier. The AUC was 89.6% in the ROC curve analysis (Fig. 3A),
and the sensitivity, specificity, and accuracy were 80.3%, 84.6%, and
80.0% respectively at the optimal cutoff point (0.1379). The estimated
values calculated by the SVM classifier from patients in the training set
are shown in Supplementary Fig. S1A.

Validation set. The model was then applied to the validation set, and
the p53 mutation status was effectively predicted. Estimated values
derived from patients in the validation set are shown in Supplementary
Fig. S1B. In the ROC curve analysis (Fig. 3B), the AUC was 76.3%. In
addition, the optimal cutoff value (0.1812) exhibited a sensitivity,
specificity, and accuracy of 62.2%, 85.1%, and 70.7%, respectively.
Hence, the 15 radiological features that constituted our model were
regarded as a p53-associated radiomic signature.

Supplementary Fig. S2 presents two representative cases of patients
with lower grade gliomas. The first case was a 46-year-old male patient
with p53 wild-type, who was correctly classified into the p53 wild-type
group based on the SVM estimated value being high (1.70). Case 2 was
a 38-year-old male patient with p53 mutation, who was correctly
classified into the p53 mutation group according to the SVM estimated
value being low (−0.86).

4. Discussion

We extracted several radiological features from the preoperative MR
images, and assessed the p53 status predictive efficiency of each fea-
ture. Subsequently, p53-associated features were screened using the
LASSO algorithm, and an SVM classifier was created to integrate the
selected features to predict p53 genotype in lower-grade gliomas. Our
model achieved an AUC of 89.6% in the training set data and an AUC of
76.3% in the validation set data. Notably, this result was better than the
predictive efficiency of any individual feature. Overall, our results in-
dicate that the p53 mutation status can be predicted using non-invasive
radiological data, and that a machine-learning approach that integrates
multivariate features is more effective and robust than individual fea-
tures.

Our analysis expands the work of several recent studies that re-
vealed novel associations between radiological features and the glioma
expression profile. In a previous study of glioblastomas, tumors that
were highly positive for the p53 mutation possessed typical lesions with
well-defined borders and a ring enhancement pattern in T1-weighted

Table 1
Patient characteristics.

Total
(n = 272)

Training
(n = 180)

Validation
(n= 92)

p value

Age (years; mean) 40.1 39.2 41.9 0.054a

Sex (male/female) 169/103 111/69 58/34 0.825b

Grade II/Grade III 179/93 123/57 56/36 0.220b

P53 wild type/P53
mutation

151/121 104/76 47/45 0.293b

Tumor location
(left/right/
bilateral)

142/113/17 95/73/12 47/40/5 0.306b

Legends.
a T-statistical test.
b Chi-square test.

Fig. 1. Area under the curves (AUCs) of individual features after 10-fold cross validation
(CV) in the training set. The features were listed based on the mean AUCs from the largest
to the smallest. The results indicated that AUCs of individual features were lower than the
AUC of the final model.
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Fig. 2. Fifteen texture features were selected using the least absolute shrinkage and selection operator algorithm (LASSO). (A) The misclassification error is shown versus log(lambda),
with the lowest misclassification point indicating the optimal number of features remaining to fit the model. Dotted vertical lines are drawn at the best lambda values based on the
minimum criteria and the 1 standard error criteria by 10-fold cross-validation. (B) LASSO coefficient profiles are shown for the 431 texture features. A vertical line is drawn at the value
where the optimal lambda results in 15 nonzero coefficients.

Table 2
Fifteen radiological features selected by the LASSO algorithm.

Features Descriptions

Autocorrelation_3 A wavelet feature derived from autocorrelation. Autocorrelation evaluates the linear spatial relationship between texture primitives
and measures the coarseness of an image.

Correlation_3 A wavelet feature derived from correlation. Correlation is a measure of gray level linear dependence between the pixels at the
specified positions relative to each other.

Informational measure of correlation 2_2 Wavelet features derived from informational measure of correlation2. Informational measure of correlation2 measures nonlinear
gray-level dependence.Informational measure of correlation 2_7

Long run low gray level emphasis_3 A wavelet feature derived from long run low gray level emphasis. It measures the joint distribution of long runs and low gray level
values.

Maximum_6 A wavelet feature derived from maximum. It describes the maximum value.
Maximum probability_2 A wavelet feature derived from maximum probability. It describes the maximum value probability.
Median_6 A wavelet feature derived from median. The median is the value that separates the lower and upper half of the sorted array of pixel

values.
Minimum_1 A wavelet feature derived from minimum. It describes the maximum gray value.
Run length nonuniformity_8 A wavelet feature derived from run length nonuniformity. Run length nonuniformity examines the distribution of run lengths, higher

when the texture is dominated by a few run lengths outliers.
Run percentage_4 A wavelet feature derived from run percentage. Run percentage indicates the homogeneity and the distribution of runs of an image in

a given direction.
Spherical disproportion Spherical disproportion indicates how close the shape is to a sphere.
Sum average Sum average measures overall image brightness.
Sum entropy_3 A wavelet feature derived from sum entropy. Sum entropy provides the texture pattern of inhomogeneity inside the tumors.
Uniformity_4 A wavelet feature derived from Uniformity. It describes the uniformity of the Image.

Fig. 3. Receiver operating characteristic curve
for p53 genotype prediction in the training and
validation sets. (A) In the training set, the area
under the curve (AUC) was 89.6%. The optimal
cutoff value (0.138), determined as the point
when the sensitivity plus specificity was max-
imal, exhibited a sensitivity, specificity, and ac-
curacy of 80.3%, 84.6%, and 80.0%, respectively
(red dot). (B) The AUC was 76.3% in the vali-
dation set. At the optimal cutoff value (0.181),
the sensitivity, specificity, and accuracy were
62.2%, 85.1%, and 70.7%, respectively (red dot).
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images with contrast (Mut et al., 2007). In addition, the p53 mutation
status has been associated with tumor location based on a voxel-based
lesion-symptom mapping analysis; p53-mutated glioblastomas tended
to be located in the frontal lobe surrounding the rostral extension of the
lateral ventricles (Zhang et al., 2014), and p53-mutated low-grade
gliomas were specifically associated with the left medial temporal lobe
and right anterior temporal lobe (Wang et al., 2015b). With the de-
velopment of radiogenomics, p53 status can be quantitatively pre-
dicted. One previous study enrolled 31 glioma patients and extracted 86
radiomic features from preoperative MRI to predict p53 status, with an
accuracy of 65.2% (AUC = 71.9%) (Liu et al., 2012). Our study en-
rolled 272 lower-grade glioma patients and extracted 431 radiomic
features, with accuracies of 80.0% (AUC = 89.6%) and 70.7%
(AUC = 76.3%) in the training and validation sets respectively. As for
the comparison between our study and another radiogenomics study
focused on MGMT (Korfiatis et al., 2016), 155 glioblastoma patients
were collected and 18 texture features were extracted in the later study,
with an AUC of 85%.

In the current study, the most predictive features of p53 status were
selected based on the LASSO algorithm, and the biological correlations
between these features and p53 status could also be revealed pre-
liminarily. For example, it was reported that the microvessel count is
higher in p53-mutated tumors than in p53-wildtype tumors (Guo et al.,
2008), as the vascular endothelial growth factor is overexpressed in
p53-mutated tumors (Riedel et al., 2000; Uchida et al., 1998). Differ-
ences in microvascularity could result in differences in signal on T2
weighted images due to differences in water content (Dang et al.,
2015), which could explain why Maximum_6 and Median_6 are higher
in p53-mutant tumors than those in p53-wildtype tumors. Further, our
results indicate that Uniformity_4, a radiological indicator for the
consistency of the image (Aerts et al., 2014), could serve as a predictive
factor of the p53 status. As previously noted, the p53 mutation pro-
motes tumor malignancy and heterogeneity (Gillet et al., 2014),
thereby leading to the expressive discrepancy of Uniformity.

At present, the p53 status of lower-grade gliomas is mainly used for
diagnosis and prognosis. IDH-mutant gliomas can be subdivided into
diffuse astrocytic and oligodendroglial tumors based on the ATRX and
p53 mutation status (Malzkorn and Reifenberger, 2016). Strong nuclear
p53 positivity is frequently observed in IDH-mutant astrocytic gliomas,
but almost never detected in IDH-mutant and 1p/19q-codeleted oligo-
dendrogliomas (Ceccarelli et al., 2016). Regarding the prognostic sig-
nificance of the p53 status, a previous study reported that patients with
wild-type p53 survive longer than those with mutant p53 in triple-ne-
gative (i.e., 1p/19q codeletion, IDH mutation, and TERT promoter
mutation) lower-grade gliomas (Chan et al., 2016).

To develop the p53-related radiomic signature, a LASSO logistic
regression model was used to reduce the 431 candidate radiological
features to a set of 15 features that are predictive of the p53 mutation
status. LASSO avoids overfitting and can be used to analyze multiple
radiological features from a relatively small sample size (Gui and Li,
2005; Hepp et al., 2016). In addition, the SVM is an effective and robust
machine-learning approach (Han and Jiang, 2014) that has been
broadly applied within the field of medicine. The SVM has been used to
differentiate benign and malignant pulmonary nodules (Zhu et al.,
2010), predict grades (Zacharaki et al., 2009; Zollner et al., 2012) and
survival (Emblem et al., 2014) of gliomas, and diagnose thyroid cancer
(Gopinath and Shanthi, 2013). The LASSO and SVM matched well in
our study, achieving a favorable prediction of the p53 mutation status
in lower-grade gliomas.

A limitation of our study is that our machine-learning approach
relied on respectively collected single-institution data. Therefore, our
results should be evaluated further in a prospective study. Moreover,
limited by the retrospectively collected data, how different imaging
protocols and field intensities (1.5 T and 3 T) affect radiomic features
have not been revealed in the present study. However, many studies
have already demonstrated the robustness of radiomics feature

extraction in terms of repeatability and reproducibility in test/re-test
settings (Aerts et al., 2014; Fried et al., 2014; Parmar et al., 2015). In
addition, we did not thoroughly reveal the biological process behind
each selected radiological feature. Further radiogenomics analysis and
experiments are necessary to solve this problem and further our un-
derstanding of the disease. Lastly, multi-model radiological data should
be integrated into our model to improve prediction of the p53 status.

5. Conclusion

Here, we found a correlation between p53 phenotype and radiomic
features in lower-grade gliomas. Using LASSO regression and SVM, we
established a radiomic signature to achieve non-invasive and efficient
prediction of the p53 status in gliomas.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.10.030.
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