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ARTICLE INFO ABSTRACT

Keywords: Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research
Schizophrenia in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network
Cortical thickness underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates
g:::ilsre these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in

gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in
12 regions of interest (ROIs) of a gesture network relevant for gesture performance and recognition. Forty
patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or
pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and
controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture
recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced
cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and
inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical
thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that
impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct
areas of the gesture network.

Nonverbal communication

1. Introduction communicative  (intransitive), or (transitive)

(Vanbellingen et al., 2010).

object-related

Gestures are an important and integral part of communication
(Goldin-Meadow and Alibali, 2013; Hostetter, 2011). They are not only
important for language production and comprehension in verbal com-
munication, but also play a crucial role in nonverbal communication, as
they may transmit information on their own (Goldin-Meadow and
Alibali, 2013).

Research on gestures may either focus on recognition and inter-
pretation of gestures, or on gesture production (Walther and Mittal,
2016). The production of gestures can be investigated in two domains:
imitation (following demonstration) and pantomime (after verbal in-
struction). The semantic categories of gestures can be meaningless,

Gestures are compound actions that involve the coordinated inter-
play of several brain regions. The neural correlates of gesture proces-
sing have been extensively studied in fMRI experiments in healthy
participants (Andric and Small, 2012; Yang et al., 2015). Planning,
pantomime of tool use, and communicative gestures activate a left-
hemispheric fronto-parieto-temporal network (Bohlhalter et al., 2009;
Hermsdorfer et al., 2007; Johnson-Frey et al., 2005; Kroliczak and Frey,
2009; Niessen et al., 2014). Here, we refer to it as “gesture network”,
that includes superior and inferior frontal as well as parietal areas and
superior and middle temporal cortices (see Fig. 1) and also contributes
to gesture recognition and interpretation. However, various gesture
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Fig. 1. Cortical regions of interest. The model is shown on a sagittal and coronal view and was created from a randomly selected case using the model maker module of Slicer 4.5. It is
superimposed on the individual T1-weighted image. The regions of interest are based on FreeSurfer colors: superior frontal gyrus: 1, pars orbitalis of IFG: 2, pars triangularis of IFG: 3,
pars opercularis of IFG: 4, precentral gyrus: 5, insula: 6, supramarginal gyrus: 7, superior parietal lobe: 8, temporal pole: 9, middle temporal gyrus: 10, superior temporal gyrus: 11,

inferior parietal lobe: 12.

types seem to depend on different regions within this network. For
example, pantomime of tool use activates some additional regions
compared to imitation of meaningless gestures, such as the triangular
part of the inferior frontal gyrus (IFG), the middle temporal gyrus
(MTG), the supramarginal gyrus (SMG), and the intraparietal sulcus
(Vry et al., 2015).

Studies investigating gesture recognition and comprehension have
focused on varying contextual information, demonstrating distinct in-
volvement of brain areas within the gesture network. For example, a
meta-analysis suggests three different networks: a perceptual-motor
network (including the premotor cortex as well as parietal and temporal
regions), a semantic network (consisting of temporal and frontal re-
gions) and a social emotive network (comprising of the IFG, the insula,
and the putamen) (Yang et al., 2015).

Taken together, fMRI studies in healthy participants reveal asso-
ciations to the left-lateralized gesture network for gesture production
(planning or execution), recognition and comprehension.

Gesturing is severely impaired in patients with apraxia following
left hemispheric brain damage. Lesion mapping studies in apraxia have
investigated pantomime of tool use and imitation of meaningless and
meaningful gestures. Pantomime of tool use has been associated with
the IFG, the occipito-temporal cortex, the parietal cortex, premotor and
(pre-) central regions, and the insula (Goldenberg et al., 2007; Hoeren
et al., 2014; Manuel et al., 2013; Weiss et al., 2016). Imitation of
meaningful gestures can be attributed to the left IFG, the middle frontal
gyrus, the premotor cortex, the SMG, and pre-central regions, whereas
imitation of meaningless gestures relies predominantly on areas of the
parietal lobe, for example on the angular gyrus, postcentral areas, and
only small parts of the IFG (Goldenberg, 2009; Hoeren et al., 2014;
Mengotti et al., 2013; Weiss et al., 2016).

To summarize, as in healthy participants, all apraxic deficits in
brain-damaged patients can be attributed to damage in the left-later-
alized gesture network (Buxbaum et al., 2014; Weiss et al., 2016), and
different gesture types show associations with distinct regions within
this network.

Patients with schizophrenia show both fewer and disturbed non-
verbal behaviors (Lavelle et al., 2013; Lavelle et al., 2014). They have
specific impairments in gesture recognition and production (imitation
and pantomime) (Matthews et al., 2013; Park et al., 2008; Walther
et al., 2015; Walther et al., 2013a; White et al., 2016). A high corre-
lation between both tasks argues further for a generalized gesture
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deficit (Walther et al., 2015). Gesture impairments are present at dis-
ease onset (Stegmayer et al., 2016b), are related to reduced social
competence (Park et al., 2008), and gesture production and recognition
predict functional outcome and negative symptoms after 6 months
(Walther et al., 2016).

Studies of neural correlates of gesture production and recognition in
schizophrenia have been sparse, but corroborate the results found in
studies in healthy or brain-damaged participants. Patients with schi-
zophrenia show aberrant brain function during gesture recognition,
particularly with functional dysconnectivity between the superior
temporal sulcus (STS) and the IFG when processing metaphoric gestures
(Straube et al., 2014). Likewise, an fMRI study of gesture production
found impaired gesture planning and execution to be linked to reduced
activation in the dorsolateral prefrontal cortex (DLPFC) and increased
activation of the inferior parietal lobe (IPL) (Stegmayer et al., 2017).
Furthermore, patients with schizophrenia with gesture deficits had re-
duced grey matter volume in the left IFG, the right insula, the temporal
pole (TP), and the anterior cingulate cortex, compared to healthy
controls (Stegmayer et al., 2016a).

Taken together, the evidence suggests that structural and functional
alterations in the gesture network contribute to the pathophysiology of
impaired gesture performance in schizophrenia. So far, structural brain
imaging analyses were limited to grey matter volume. However, schi-
zophrenia is also associated with reduced cortical thickness (Goldman
et al., 2009). Despite the fact that grey matter volume is a composite of
cortical thickness and surface area, volume is more closely linked to
surface area than to thickness (Winkler et al., 2010). Measurements of
cortical thickness and surface area, in turn, are genetically and phe-
notypically independent (Panizzon et al., 2009; Winkler et al., 2010)
and each shows a different pattern of development during adolescence,
especially in regions important for social cognition (Vijayakumar et al.,
2016). Furthermore, surface area seems to be more influenced by ge-
netic factors than thickness, as most volumetric differences between
first-degree relatives of schizophrenia and healthy controls are related
to surface area rather than thickness (Goghari et al., 2007).

Even though cortical thinning in schizophrenia may be influenced
by genetic effects, it is more associated to disease factors, as thinning
occurs around the time of illness onset and is absent before onset
(Sprooten et al., 2013). In addition, cortical thinning might not be
progressive over the course of the illness, again arguing that patholo-
gical changes occur in a limited vulnerable phase around illness onset
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(Kubota et al., 2011). Therefore, cortical thickness can reveal additional
information and important insights into the underlying pathophy-
siology.

Our goal in this study was thus to examine cortical thickness cor-
relates in the gesture network for gesture production and recognition in
patients with schizophrenia. Gesture production is impaired in ap-
proximately 50% of patients with schizophrenia (Walther et al., 2015;
Walther et al., 2013a; Walther et al., 2013b). Patients with gesture
deficits and without demonstrate clinical and demographic differences,
for example patients with deficits were older, had poorer frontal cortex
function and more severe psychopathology (Walther et al., 2013b).
Therefore, we divided our clinical sample in patients with and without
gesture deficits.

Given the findings of gesture production or recognition in healthy
controls, in patients with brain damage, and from the few studies fo-
cusing on patients with schizophrenia, we hypothesized that we would
find associations between reduced cortical thickness and disturbed
gesture production and recognition in a comprehensive gesture net-
work, consisting of the superior parietal lobe (SPL), the IPL, the su-
perior temporal gyrus (STG), the MTG, the superior frontal gyrus (SFG),
the IFG (pars opercularis, triangularis, and orbitalis), the precentral
gyrus, the SMG, the TP, and the insula. As data decidedly indicates a
predominantly left hemisphere network (Bohlhalter et al., 2009;
Goldenberg, 2009; Hermsdorfer et al., 2013; Johnson-Frey et al., 2005;
Kroliczak and Frey, 2009; Manuel et al., 2013), we concentrated ex-
clusively on the left hemisphere. Results for the right hemisphere can be
found in the supplementary table S1.

2. Materials and methods
2.1. Participants

Forty patients with schizophrenia spectrum disorder (25 men, 15
women) were recruited at the inpatient and outpatient departments at
the University Hospital of Psychiatry, Bern, Switzerland. Forty-one
healthy controls (23 men, 18 women) were recruited among staff and
were matched for age, sex, and education. Patients were split into two
groups according to gesture performance (with deficits and without
deficits, according to the previously published cut-off scores (Walther
et al., 2013a). Demographic and clinical characteristics of the partici-
pants are presented in Table 1. All patients and controls were right-
handed according to the Edinburgh Handedness Inventory (Oldfield,
1971).

Patients were diagnosed with schizophrenia, schizoaffective dis-
order, or schizophreniform disorder according to the structured clinical
interview (SCID) and DSM-5 criteria. The Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987) was additionally used to
assess schizophrenia symptoms. Thirty-six of 40 patients received an-
tipsychotic medication. The dosages of these antipsychotics were cal-
culated as the average chlorpromazine equivalents (CPZ) (Woods,
2003) per day for the last five years.

Exclusion criteria were substance-related addictions (except nico-
tine), a past or current medical or neurological condition, head trauma
with loss of consciousness, electroconvulsive treatment, and any con-
traindications to MRI (magnetic resonance imaging). Specific exclusion
criteria for controls were a history of psychiatric disorders and first-
degree relatives with psychotic disorders. Written informed consent
was acquired from all participants and the study was approved by the
local ethics committee, “Kantonale Ethikkommission Bern” (KEK-BE
025/13).

First, we conducted the clinical interview and assessments of psy-
chpathology. Afterwards, on the same day, participants underwent
structural MRI scanning. The assessment of the gesture tests was per-
formed either on the same day or the day after the MRI scan.
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2.2. Gesture tests

We used the test of upper limb apraxia (TULIA) (Vanbellingen et al.,
2010) to assess performance of hand and finger gestures. The test was
videotaped and later analyzed by a rater who was blind to the diag-
noses. Possible errors included temporal-spatial errors or content errors.
The maximum total score is 240, based on 48 items in either the imi-
tation domain (performance after demonstration by the examiner) or
the pantomime domain (performance after verbal instruction). A higher
score indicates superior performance. Further, three semantic types of
gestures were included: meaningless, intransitive, and transitive ges-
tures.

The Postural Knowledge Test (PKT) (Bohlhalter et al., 2011; Mozaz
et al., 2002) was used to assess gesture recognition. Participants were
presented with cartoons of a person with a missing hand, performing
transitive or intransitive gestures. For each cartoon, the participants
were asked to indicate the missing hand gesture, choosing between
three options. Total scores range from 0 to 30. Again, a higher score
indicates better performance.

2.3. MRI acquisition

Imaging was carried out on a 3T MRI scanner (Siemens Magnetom
Trio; Siemens Medical Solutions, Erlangen, Germany) with a 12-
channel head coil. We acquired a T1-weighted MDEFT (modified driven
equilibrium Fourier transform pulse) sequence (Deichmann et al.,
2004) for anatomical brain imaging (176 sagittal slices,
1 x 1 x 1mm® matrix size 256 x 256), field of view (FOV)
256 X 256, 7,92 ms repetition time (TR), 2,48 ms echo time (TE),
910 ms inversion time (TI), and a flip angle (FA) of 16°.

2.4. Data analyses

2.4.1. Cortical thickness analyses

We used an internal pipeline (see https://github.com/pnlbwh/
pnlutil) to process the data. The T1-weighted images were trans-
formed from DICOM to NRRD file format by creating a nhdr header file
for all participants. Then the images were aligned to the AC-PC axis and
centered. All scans were visually examined for image quality and or-
ientation. A brain masking technique based on multi-atlas brain seg-
mentation (MABS) was implemented to exclude non-brain areas (Del Re
et al., 2016). This technique has shown to be more accurate than the
brain masks generated using FreeSurfer (Del Re et al., 2016).

The masked MR images were processed using FreeSurfer version
5.3. (Athinoula A. Martinos Center for Biomedical Imaging,
Charlestown, Massachusetts, USA). The fully automated FreeSurfer pi-
peline performs cortical reconstruction and subcortical volumetric
segmentation using an automated algorithm. A detailed description of
this process has been described in previous publications (Dale et al.,
1999; Fischl, 2012; Fischl et al., 1999) and is available on the Free-
Surfer website (http://ftp.nmr.mgh.harvard.edu/fswiki/recon-all). The
FreeSurfer parcellation was then quality-controlled with a special focus
on our ROIs. The following 12 ROIs (see Fig. 1) were selected using the
Desikan-Killiany atlas (Desikan et al., 2006): SPL, IPL, STG, MTG, SFG,
IFG (pars opercularis, triangularis, and orbitalis), precentral gyrus,
SMG, TP, and insula. As gesture performance is a function of a left-
lateralized brain network, we focused on ROIs in the left hemisphere
(Goldenberg, 2009).

The model is shown on a sagittal and coronal view and was created
from a randomly selected case using the model maker module of Slicer
4.5. It is superimposed on the individual T1-weighted image. The re-
gions of interest are based on FreeSurfer colors: superior frontal gyrus:
1, pars orbitalis of IFG: 2, pars triangularis of IFG: 3, pars opercularis of
IFG: 4, precentral gyrus: 5, insula: 6, supramarginal gyrus: 7, superior
parietal lobe: 8, temporal pole: 9, middle temporal gyrus: 10, superior
temporal gyrus: 11, inferior parietal lobe: 12.
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Table 1
Demographic and clinical characteristics.
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Variables” Controls Patients with deficits Patients without deficits ~ Statistics”
(n = 41), (n = 19), Mean (SD) (n = 21), Mean (SD)
Mean (SD)
Chi-square test
x?2(@df=2 p
Sex (men/ 23/18 8/11 17/4 6.579 0.037
‘women)
One-way ANOVA
Fdf=2/78 p Post hoc (p)
Controls vs. Controls vs. patients Patients with vs.
patients with without deficits without deficits
deficits
Age (years) 38.93 (13.69) 44.84 (11.13) 32.38 (7.34) 5.623 0.005 0.222 0.124 0.004
Education 14.20 (2.73) 12.5(3.13) 14.62 (2.96) 3.100 0.051 0.113 1.000 0.069
(years)
TULIA total 225.86 (7.86) 192.86 (16.32) 223.24 (7.54) 70.050 0.001 0.001 1.000 0.001
score
PKT total score  27.37 (1.46)  21.84 (6.50) 25.90 (2.21) 16.422 0.001 0.001 0.365 0.001

CPZ (mg) 349.86 (343.02) 127.57 (189.40)
5 years

DOI (months) 212.84 (170.57) 80.38 (83.80)

PANSS positive 19.47 (7.65) 17.05 (5.00)

PANSS negative 17.05 (3.81) 18.05 (5.05)

PANSS total 72.05 (19.24) 70.00 (16.34)

t-test
Tf=38) p

2.570 0.003
3.164 0.002
1.199 0.048
—0.698 0.241
0.365 0.806

2 CPZ, average chlorpromazine equivalents for the last five years; DOI, duration of illness; PANSS, positive and negative syndrome scale.
b oD, standard deviation; df, degrees of freedom; post hoc tests of the ANOVA were Bonferroni-corrected.

* p value is significant at the 0.05 level (2-tailed).
** p value is significant at the 0.01 level (2-tailed).

2.4.2. Statistical analyses

All statistical analyses were computed using IBM SPSS for
Macintosh, version 24. Demographic and clinical data were compared
using a chi-square test, t-tests, or one-way analyses of variance
(ANOVA) where appropriate.

For cortical thickness analyses, a multivariate analysis of covariance
(MANCOVA) with age, sex, and intracranial volumes (ICV) as covari-
ates was performed on the overall TULIA score to determine the pre-
sence of group differences in the cortical thickness of the ROIs. Post hoc
tests were performed between the three groups for which p values were
Sidak-corrected. In a next step, partial correlations, corrected for age,
sex, ICV, and antipsychotic dosage were conducted between the ROIs
and the TULIA and PKT scores within both the patient and the control
group. See the supplementary material for additional cortical thickness
analyses of the right hemisphere.

3. Results
3.1. Behavioral and clinical data

Demographic and clinical characteristics are given in Table 1. We
used TULIA cut-off scores (Walther et al., 2013a) to separate patients
with deficits in gesture production from patients without deficits.
Splitting the patients into a deficits and a non-deficits group revealed
significant differences in sex distribution between groups x? @
= 6.579, p = 0.037): fewer women were found in the group without
deficits. Furthermore, patients with deficits were older than patients
without deficits, received higher antipsychotic medication dosages, and
had longer duration of illness as well as a higher PANSS positive score.
However, the two groups had comparable negative and total PANSS
scores.

According to the cut-off, 19 patients showed relevant impairments
in gesture production, whereas 21 patients showed no deficits. Patients
with deficits performed worse compared to patients without deficits or
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controls in the gesture production test. However, patients without
deficits and controls did not differ significantly (p > 0.05).

3.2. Group differences in cortical thickness

Group differences in the cortical thickness of the ROIs were eval-
uated with a MANCOVA, treating the group variable as fixed factor, the
ROIs as dependent variables, and sex, age, and ICV as covariates (Wilks
Lambda = 0.574, p = 0.031) (see Table 2 and Fig. 2). Post hoc tests
(Sidak-corrected) showed significant differences for group in the fol-
lowing ROIs: IPL, MTG, pars opercularis of IFG, precentral gyrus, SMG,
SPL, STG, and insula. Patients with deficits showed reduced cortical
thickness in all ROIs compared to controls. However, no significant
group differences were found in the pars orbitalis and triangularis of
IFG, SFG, and TP, and no other group comparisons showed significant
differences.

3.3. Associations of impaired gesture production and recognition with
cortical thickness

Within patients and controls, we computed partial correlations be-
tween the TULIA or PKT scores and the thickness of the ROISs, corrected
for age, sex, ICV, and, within the patient sample, for antipsychotic
dosage (see Table 3). In patients, we found significant correlations
between TULIA scores and the precentral gyrus, the SPL, and the TP.
For PKT scores, we detected significant associations within patients for
the IPL, the pars opercularis of the IFG, the precentral gyrus, the SFG,
the SPL, and the STG. We further correlated the two TULIA domains
pantomime and imitation with cortical thickness separately within the
patients and controls using the same covariates. In patients, we detected
associations between pantomime and cortical thickness in the pre-
central gyrus as well as for the SPL, and between imitation and the
temporal pole. In controls, pantomime was also correlated with the
precentral gyrus (see Table 4).
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Table 2
MANCOVA with post hoc tests.

ROI Statistics®
Fdf=2/75) p Sign. post hoc tests

Controls vs. patients with
deficits

Inferior parietal lobe 6.921 0.002**  0.002*

Middle temporal gyrus 4.183 0.019’ 0.015

Pars opercularis of IFG®  5.218 0.008  0.015

Pars orbitalis of IFG 1.227 0.299

Pars triangularis of IFG 0.891 0.414

Precentral gyrus 6.655 0.002**  0.003

Superior frontal gyrus 1.526 0.224

Supramarginal gyrus 3.533 0.034 0.041

Superior parietal lobe 5.847 0.004**  0.008

Superior temporal gyrus  3.771 0.028 0.023

Temporal pole 2.056 0.135

Insula 5.023 0.009 0.036"

Note: Post hoc comparisons between patients with and without deficits and between
patients without deficits and controls were not significant.

2 F, F-value; df, degrees of freedom; post hoc tests of the MANCOVA were Sidak-cor-
rected.

Y [FG, inferior frontal gyrus.

* p value is significant at the 0.05 level (2-tailed).

** p value is significant at the 0.01 level (2-tailed).

All correlations (except the one between TULIA scores and the TP)
were positive, indicating inferior performance in gesture production
and recognition with reduced cortical thickness.

In controls, only PKT scores and cortical thickness of the IPL were
correlated, demonstrating that increased thickness of this ROI is related
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to superior gesture recognition.
Partial correlations for PKT subscores transitive and intransitive in
patients and controls are presented in the Supplementary Table S2.

4. Discussion

This study aimed to investigate cortical thickness correlates in the
gesture network of gesture production and recognition in patients with
schizophrenia. We found cortical thinning of this network, including
the pars opercularis of the IFG, the precentral gyrus, the insula, the SPL,
the IPL, the SMG, the STG, and the MTG in patients with gesture def-
icits, compared to healthy controls. In contrast, cortical thickness in
patients without deficits did not significantly differ from controls.
Furthermore, impaired gesture recognition in patients was also related
to cortical thinning within the gesture network.

The significantly thinned regions in the frontal regions included the
pars opercularis of the IFG, the precentral gyrus, and the insula in pa-
tients with gesture production deficits. In addition, reduced cortical
thickness in the precentral gyrus correlated with inferior gesture pro-
duction in all patients. The two frontal regions (IFG, precentral gyrus)
and the insula have been associated with gesture tasks in healthy and
brain-damaged participants. Previous work in healthy participants de-
monstrated activation of the precentral gyrus, the IFG, and the insula
during planning or execution of pantomime and imitation gestures
(Bohlhalter et al., 2009; Fridman et al., 2006; Kroliczak and Frey, 2009;
Vry et al., 2015). Lesion studies corroborate those results and show that
impaired production of pantomime tool use or imitation of meaningful
and meaningless gestures were associated with the pars opercularis and
other parts of the IFG, the insula, and the precentral gyrus (Goldenberg
et al., 2007; Goldenberg and Karnath, 2006; Manuel et al., 2013; Weiss
et al., 2016). In schizophrenia, reduced grey matter volume has been
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Fig. 2. Illustration of the mean cortical thickness of each ROI in each group.

Significant group differences in post hoc tests between patients with deficits and controls are marked with asterisks (*); error bars indicate standard deviations.
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Table 3

NeuroImage: Clinical 17 (2018) 213-221

Partial correlations between the ROIs and task scores for patients and controls, corrected for age, sex, ICV, and in patients additionally for CPZ.

ROI Patients Controls

TULIA® PKT" TULIA PKT

r p r p r p r p
Inferior parietal lobe 0.210 0.220 0.375 0.024 0.133 0.428 0.370 0.022
Middle temporal gyrus —0.014 0.935 0.227 0.183 0.085 0.612 0.171 0.305
Pars opercularis of IFG* 0.096 0.577 0.407 0.014 0.217 0.191 0.109 0.513
Pars orbitalis of IFG 0.092 0.595 —0.078 0.651 0.047 0.779 0.020 0.906
Pars triangularis of IFG —0.102 0.553 0.064 0.711 0.184 0.268 0.285 0.083
Precentral gyrus 0.404 0.014 0.332 0.048 0.232 0.161 0.318 0.051
Superior frontal gyrus 0.117 0.497 0.438 0.008 0.166 0.319 0.170 0.309
Supramarginal gyrus 0.205 0.231 0.325 0.053 —-0.097 0.564 0.065 0.697
Superior parietal lobe 0.417 0.011 0.329 0.050 0.088 0.598 0.142 0.395
Superior temporal gyrus 0.197 0.250 0.389 0.019 0.077 0.647 0.129 0.440
Temporal pole —0.444 0.007 —0.165 0.336 —-0.074 0.657 0.092 0.581
Insula —0.048 0.780 0.004 0.982 0.095 0.570 0.107 0.524

2 TULIA, test of upper limb apraxia.

b PKT, postural knowledge test.

¢ IFG, inferior frontal gyrus.

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

found in frontal areas including the IFG, the insula, and the precentral
gyrus in pantomime performance (Stegmayer et al., 2016a). More
specifically, there is considerable evidence that the IFG plays a key role
in gesture production. The pars opercularis of the IFG is a part of Broca's
area that is not just important for language, but also for higher order
motor functions, because it integrates sensory stimuli with motor hand
actions (Binkofski and Buccino, 2004). Therefore, the pars opercularis
of the IFG serves as an important area for interplay between language
and praxis, and lesions of this area have been shown to lead to con-
current aphasia and apraxia (Weiss et al., 2016).

In our study, patients with deficits in gesture production showed
reduced cortical thickness compared to healthy controls in the temporal
lobe, i.e. the MTG and the STG. Compatible with our results, studies of
healthy participants revealed activation of the left MTG during plan-
ning of tool use pantomime and intransitive gestures (Kroliczak and
Frey, 2009; Vry et al., 2015), and an association between the activation
and volume of the left STG during planning of transitive or pantomime
of intransitive gestures and production of metaphoric gestures (Bernard
et al., 2015; Bohlhalter et al., 2009; Vry et al., 2015). In addition, lesion

Table 4

studies revealed associations of the left MTG with imitation of mean-
ingless hand gestures (Goldenberg and Karnath, 2006) and of the left
MTG and STG with imitation and pantomime of tool use gestures
(Buxbaum et al., 2014). Patients with schizophrenia showed reduced
activity in the STS during imitation of finger movements (Thakkar
et al., 2014), and reduced grey matter volume in the left MTG has been
found to be associated with pantomime performance in patients with
deficits (Stegmayer et al., 2016a). The temporal lobe has been shown to
be important for gesture knowledge and production. For example, the
posterior part of the temporal lobe is relevant for the processing of
semantic object information (Chao et al., 1999; Johnson-Frey et al.,
2005; Martin et al., 1996) and for arm and hand positioning in the
production of tool-related gestures (Buxbaum et al., 2014).

In the parietal lobe, thinning of the IPL, the SPL, and the SMG was
present in patients with deficits in gesture production, compared to
healthy controls. In addition, reduced cortical thickness of the SPL was
correlated with inferior gesture production in all patients. Our results
are consistent with studies of healthy participants that reveal an in-
volvement of the left SPL, IPL, and SMG in planning or executing

Partial correlations between the ROIs of the left hemisphere and TULIA domain for patients and controls, corrected for age, sex, ICV and in patients additionally for CPZ.

ROI Patients Controls

TULIA? TULIA TULIA TULIA

Pantomime Imitation Pantomime Imitation

r p r p r p r p
Inferior parietal lobe 0.275 0.104 0.008 0.965 0.256 0.120 —0.061 0.715
Middle temporal gyrus 0.030 0.862 —0.089 0.606 0.249 0.132 —0.140 0.403
Pars opercularis of IFG” 0.201 0.240 —0.132 0.443 0.313 0.055 0.026 0.878
Pars orbitalis of IFG 0.209 0.220 —0.159 0.355 0.058 0.730 0.018 0.916
Pars triangularis of IFG —0.024 0.891 —0.205 0.231 0.283 0.085 0.003 0.987
Precentral gyrus 0.404 0.014 0.058 0.735 0.367 0.023 —0.010 0.952
Superior frontal gyrus 0.226 0.185 —0.128 0.457 0.316 0.053 —0.070 0.676
Supramarginal gyrus 0.282 0.096 —0.016 0.928 —0.003 0.988 —0.175 0.294
Superior parietal lobe 0.396 0.017 0.289 0.087 0.250 0.130 -0.135 0.419
Superior temporal gyrus 0.301 0.074 -0.071 0.679 0.230 0.165 —-0.133 0.428
Temporal pole -0.279 0.099 —0.570 0.001 —0.042 0.802 —0.087 0.604
Insula —0.040 0.817 —0.044 0.799 0.139 0.405 0.009 0.955

@ TULIA, test of upper limb apraxia.

Y IFG, inferior frontal gyrus.

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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intransitive and transitive pantomime or imitation gestures (Bohlhalter
et al., 2009; Fridman et al., 2006; Kroliczak and Frey, 2009; Vry et al.,
2015). In accordance with studies of healthy participants, research on
brain-damaged patients often indicates the importance of the parietal
lobe for imitation of meaningless and meaningful gestures (Goldenberg
and Karnath, 2006; Mengotti et al., 2013), whereas the role of the
parietal lobe for pantomime of tool use has been questioned
(Goldenberg, 2009). However, recent lesion studies in large sample
sizes showed that the integrity of the SPL and the IPL is essential for
pantomime of tool use gestures (Hoeren et al., 2014; Weiss et al., 2016).
Grey matter volume or activity of the IPL or the SPL has also been
linked to pantomime, non-imitative actions, or action observation in
patients with schizophrenia (Stegmayer et al., 2016a; Thakkar et al.,
2014). Taken together, findings suggest that the parietal lobe, parti-
cularly the IPL and the SPL combine sensory, motor, and cognitive in-
puts and play an important role in goal-directed actions such as
grasping and execution of tool-related actions (Binkofski and Buxbaum,
2013; Gottlieb, 2007).

In separate correlation analyses, we tested whether TULIA domains
had a specific pattern of association with brain structure. Indeed, in
patients we detected higher correlations for pantomime than for imi-
tation with cortical thickness (see Table 4). This effect might be due to
limited variance in imitation compared to pantomime scores in pa-
tients, as only a few patients show imitation deficits.

In additional correlation analyses, we then tested if the PKT sub-
domains are differently associated with brain structure (see Table S2).
In controls, the recognition of transitive gestures was associated with
the pars triangularis of the IFG and the STG. In contrast, in patients we
detected very similar patterns of correlations for transitive and in-
transitive gestures of several associations within the gesture network.

Cortical thinning in schizophrenia has been found in various brain
regions, predominantly in temporal and frontal areas (Goldman et al.,
2009; Oertel-Knochel et al., 2013; Rimol et al., 2010). Our results partly
support these findings. However, there were no differences in cortical
thickness of patients without deficits and controls. In addition, patients
with and without deficits did not differ regarding cortical thickness in
any ROI. This suggests that cortical thinning within patients with ges-
ture deficits, compared to controls, is related neither to changes of
cortical thickness in schizophrenia alone, nor exclusively to a gesture
impairment. On the one hand, if cortical thinning in the gesture net-
work in patients with deficits would only represent general cortical
thinning in schizophrenia, we would also expect differences in ROIs
between patients without deficits and controls. On the other hand, if the
reduced cortical thickness in patients with deficits would solely re-
present the gesture deficits, we should also see a difference between
patients with and without deficits. As neither scenario is reflected in our
findings, we conclude that the cortical thinning in patients with deficits
compared to controls not only represents general cortical thinning in
schizophrenia, but is also associated with the gesture impairment.

Our findings may also be in part associated with illness chronicity.
While cortical thickness in frontal and temporal lobes is reduced in
recent-onset participants (Ziermans et al.,, 2012), longitudinal in-
vestigations suggest progressive decline in cortical thickness in these
areas in schizophrenia (van Haren et al., 2011). We have investigated a
patient group with a considerable age span. Thus, our findings may be
influenced by, but not limited to, illness chronicity.

In eight out of 12 ROIs, we found differences in cortical thinning in
patients with deficits compared to healthy controls. However, in four
ROIs, namely the pars orbitalis and triangularis of the IFG, the SFG, and
the TP, we found no group differences in cortical thickness. In contrast,
recent evidence from gesture studies in schizophrenia suggest an in-
volvement of those four ROIs in schizophrenia (Stegmayer et al., 2016a;
Straube et al., 2013). There are several possible explanations for the
observed discrepancy between studies. Depending on gesture category
and domain, different brain regions can be affected. Furthermore,
specific gesture errors can also be associated with different brain
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regions (Manuel et al., 2013). We applied validated tests of gesture
behavior, including blinded ratings (TULIA) or unequivocal multiple
choice tests (PKT). Our composite score of gesture production included
both imitation and pantomime of meaningful (transitive or intransitive)
and meaningless gestures. In addition, gesture recognition was solely
measured as the ability to recognize correct hand gestures, whereas
comprehension was not tested. Therefore, findings can be inconsistent
depending on the investigated gesture task or underlying construct.

In addition to the variety of gesture tests, the selection of a suitable
atlas and therefore the definition of the ROIs may have some intrinsic
limitations. For example, the SFG can be divided into three separable
subregions that are part of distinct functional networks (Li et al., 2013).
Arbitrarily combining those functionally separate parts into one entity
may lead to distorted or negative findings. Finally, studies of grey
matter volume and functional activations do not always lead to similar
results, and volume and cortical thickness provide not entirely the same
information about grey matter structure (Winkler et al., 2010). So far,
this is the first study in patients with schizophrenia investigating cor-
tical thickness abnormalities in gesture production and recognition.

Surprisingly, in schizophrenia patients, superior gesture production
was associated with reduced cortical thickness in the temporal pole.
This negative correlation was only detected for the left side of this ROI
and it is most likely driven by the TULIA imitation subscore (see Table 4
and S1). The result is quite counter-intuitive and if replicated requires
clarification in future studies.

On the behavioral level, gesture production and recognition are
strongly correlated in patients with schizophrenia (Walther et al.,
2015). Based on this finding, we expected a pattern of associations
between cortical thinning and gesture recognition similar to that found
in gesture production. However, our analyses differed from these ex-
pectations. Gesture production was tested categorically based on a cut-
off, whereas gesture recognition was tested as a continuous variable
within a correlation with cortical thickness. We found associations of
reduced cortical thickness in several regions, including the IPL, the
opercular part of the IFG, the STG, and the SFG with inferior perfor-
mance in the gesture recognition task in patients. The slightly different
pattern of correlations for gesture production and recognition deficits in
our study (see Table 3) indicates that our tests for gesture production
and recognition do not measure the exact same underlying mechanisms.
Our results are in line with a study that found a functional dyscon-
nectivity of the left STS to the bilateral IFG during the processing of
metaphoric gestures in patients with schizophrenia (Straube et al.,
2014). In addition, a meta-analysis revealed the involvement of an in-
terplay of several, mainly left-lateralized brain regions, including the
IFG, the STG, the MTG, the SPL, and the IPL, in gesture recognition
(Yang et al., 2015). Areas of the parietal lobe, comprising the SMG and
the IPS, are involved in perceiving hand gestures (Andric and Small,
2012), whereas temporal and frontal areas, including the MTG, the
STG, and the IFG are involved in the processing of gesture meanings
and action recognition (Andric and Small, 2012; Buccino et al., 2004).

Some limitations of this study need to be addressed. First, we used a
predefined atlas to map the ROIs on the brains (Desikan-Killiany atlas).
Each ROI, for example the SFG (Li et al., 2013), can include several
regions that are functionally independent, and a measurement across
the entire ROI may cause distortions. Second, although some of our
patients have a long medical history, our sample presents a large var-
iance from first-episode to chronic patients. We controlled for the effect
of medication and therefore indirectly also for duration of illness, but
the heterogeneity of our sample nevertheless reduces the general-
izability of our results. Third, age not only affects cortical thickness of
frontal and temporal areas in schizophrenia patients (van Haren et al.,
2011), but is also strongly associated with the gesture performance.
Indeed, schizophrenia patients with gesture performance deficits are
often the older patients. Even though we controlled for age in all of our
analyses, one should bear in mind this closely linked relation between
defective gesture performance and age.
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5. Conclusion

In summary, this study explored, for the first time, cortical thickness
abnormalities in gesture production and recognition in patients with
schizophrenia. Our findings indicate that impaired gesture performance
in schizophrenia may partly result from structural alterations, such as
cortical thinning. These findings have significant implications for the
understanding of the nature of gesture deficits in schizophrenia.
Clearly, further studies are needed to specify the exact functions of the
different regions and connecting fibers in specific gesture tasks. In ad-
dition, longitudinal studies are needed to disentangle the influence of
illness chronicity from the gesture deficits in schizophrenia.

Funding Source

This study received funding from the Bangerter-Rhyner Foundation
(to Sebastian Walther), the Swiss National Science Foundation (SNF
grant 152,619/1 to Sebastian Walther, Andrea Federspiel, and Stephan
Bohlhalter), and from the National Institute of Mental Health (NIMH
T32MHO016259-35 to Amanda E. Lyall).

Conflict of interest

The authors declare that there are no conflicts of interest regarding
the subject of this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.10.017.

References

Andric, M., Small, S.L., 2012. Gesture's neural language. (1664-1078 Electronic).

Bernard, J.A., Millman, Z.B., Mittal, V.A., 2015. Beat and metaphoric gestures are dif-
ferentially associated with regional cerebellar and cortical volumes. Hum. Brain
Mapp. 36, 4016-4030.

Binkofski, F., Buccino, G., 2004. Motor functions of the Broca's region. Brain Lang. 89,
362-369.

Binkofski, F., Buxbaum, L.J., 2013. Two action systems in the human brain. Brain Lang.
127, 222-229.

Bohlhalter, S., Hattori, N., Wheaton, L., Fridman, E., Shamim, E.A., et al., 2009. Gesture
subtype-dependent left lateralization of praxis planning: an event-related fMRI study.
Cereb. Cortex 19, 1256-1262.

Bohlhalter, S., Vanbellingen, T., Bertschi, M., Wurtz, P., Cazzoli, D., et al., 2011.
Interference with gesture production by theta burst stimulation over left inferior
frontal cortex. Clin. Neurophysiol. 122, 1197-1202.

Buccino, G., Binkofski, F., Riggio, L., 2004. The mirror neuron system and action re-
cognition. Brain Lang. 89, 370-376.

Buxbaum, L.J., Shapiro, A.D., Coslett, H.B., 2014. Critical brain regions for tool-related
and imitative actions: a componential analysis. Brain 137, 1971-1985.

Chao, L.L., Haxby, J.V., Martin, A., 1999. Attribute-based neural substrates in temporal
cortex for perceiving and knowing about objects. Nat. Neurosci. 2, 913-919.

Dale, A.M., Fischl, B., Sereno, M., 1999. Cortical surface-based analysis. I. Segmentation
and surface reconstruction. NeuroImage 9, 179-194.

Deichmann, R., Schwarzbauer, C., Turner, R., 2004. Optimisation of the 3D MDEFT se-
quence for anatomical brain imaging: technical implications at 1.5 and 3 T.
NeuroImage 21, 757-767.

Del Re, E.C., Gao, Y., Eckbo, R., Petryshen, T.L., Blokland, G.A., et al., 2016. A new MRI
masking technique based on multi-atlas brain segmentation in controls and schizo-
phrenia: a rapid and viable alternative to manual masking. J. Neuroimaging 26,
28-36.

Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., et al., 2006. An au-
tomated labeling system for subdividing the human cerebral cortex on MRI scans into
gyral based regions of interest. Neurolmage 31, 968-980.

Fischl, B., 2012. FreeSurfer. Neurolmage 62, 774-781.

Fischl, B., Sereno, M., Dale, A.M., 1999. Cortical surface-based analysis. II: inflation,
flattening, and a surface-based coordinate system. Neurolmage 9, 195-207.

Fridman, E.A., Immisch, I., Hanakawa, T., Bohlhalter, S., Waldvogel, D., et al., 2006. The
role of the dorsal stream for gesture production. Neurolmage 29, 417-428.

Goghari, V.M., Rehm, K., Carter, C.S., AW 3rd, MacDonald, 2007. Regionally specific
cortical thinning and gray matter abnormalities in the healthy relatives of schizo-
phrenia patients. Cereb. Cortex 17, 415-424.

Goldenberg, G., 2009. Apraxia and the parietal lobes. Neuropsychologia 47, 1449-1459.

Goldenberg, G., Karnath, H.O., 2006. The neural basis of imitation is body part specific. J.

220

NeuroImage: Clinical 17 (2018) 213-221

Neurosci. 26, 6282-6287.

Goldenberg, G., Hermsdorfer, J., Glindemann, R., Rorden, C., Karnath, H.O., 2007.
Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb.
Cortex 17, 2769-2776.

Goldin-Meadow, S., Alibali, M.W., 2013. Gesture's role in speaking, learning, and creating
language. Annu. Rev. Psychol. 64, 257-283.

Goldman, A.L., Pezawas, L., Mattay, V.S., Fischl, B., Verchinski, B.A., et al., 2009.
Widespread reductions of cortical thickness in schizophrenia and spectrum disorders
and evidence of heritability. Arch. Gen. Psychiatry 66, 467—477.

Gottlieb, J., 2007. From thought to action: the parietal cortex as a bridge between per-
ception, action, and cognition. Neuron 53, 9-16.

van Haren, N.E., Schnack, H.G., Cahn, W., van den Heuvel, M.P., Lepage, C., et al., 2011.
Changes in cortical thickness during the course of illness in schizophrenia. Arch. Gen.
Psychiatry 68, 871-880.

Hermsdorfer, J., Terlinden, G., Muhlau, M., Goldenberg, G., Wohlschlager, A.M., 2007.
Neural representations of pantomimed and actual tool use: evidence from an event-
related fMRI study. Neurolmage 36 (Suppl. 2), T109-18.

Hermsdorfer, J., Li, Y., Randerath, J., Roby-Brami, A., Goldenberg, G., 2013. Tool use
kinematics across different modes of execution. Implications for action representation
and apraxia. Cortex 49, 184-199.

Hoeren, M., Kummerer, D., Bormann, T., Beume, L., Ludwig, V.M., et al., 2014. Neural
bases of imitation and pantomime in acute stroke patients: distinct streams for praxis.
Brain 137, 2796-2810.

Hostetter, A.B., 2011. When do gestures communicate? A meta-analysis. Psychol. Bull.
137, 297-315.

Johnson-Frey, S.H., Newman-Norlund, R., Grafton, S.T., 2005. A distributed left hemi-
sphere network active during planning of everyday tool use skills. Cereb. Cortex 15,
681-695.

Kay, S.R., Fiszbein, A., Opler, L.A., 1987. The positive and negative syndrome scale
(PANSS) for schizophrenia. Schizophr. Bull. 13, 261-276.

Kroliczak, G., Frey, S.H., 2009. A common network in the left cerebral hemisphere re-
presents planning of tool use pantomimes and familiar intransitive gestures at the
hand-independent level. Cereb. Cortex 19, 2396-2410.

Kubota, M., Miyata, J., Yoshida, H., Hirao, K., Fujiwara, H., et al., 2011. Age-related
cortical thinning in schizophrenia. Schizophr. Res. 125, 21-29.

Lavelle, M., Healey, P.G., McCabe, R., 2013. Is nonverbal communication disrupted in
interactions involving patients with schizophrenia? Schizophr. Bull. 39, 1150-1158.

Lavelle, M., Healey, P.G., McCabe, R., 2014. Nonverbal behavior during face-to-face so-
cial interaction in schizophrenia: a review. J. Nerv. Ment. Dis. 202, 47-54.

Li, W., Qin, W., Liu, H., Fan, L., Wang, J., et al., 2013. Subregions of the human superior
frontal gyrus and their connections. Neurolmage 78, 46-58.

Manuel, A.L., Radman, N., Mesot, D., Chouiter, L., Clarke, S., et al., 2013. Inter- and
intrahemispheric dissociations in ideomotor apraxia: a large-scale lesion-symptom
mapping study in subacute brain-damaged patients. Cereb. Cortex 23, 2781-2789.

Martin, A., Wiggs, C.L., Ungerleider, L.G., Haxby, J.V., 1996. Neural correlates of cate-
gory-specific knowledge. Nature 379, 649-652.

Matthews, N., Gold, B.J., Sekuler, R., Park, S., 2013. Gesture imitation in schizophrenia.
Schizophr. Bull. 39, 94-101.

Mengotti, P., Corradi-Dell'Acqua, C., Negri, G.A., Ukmar, M., Pesavento, V., Rumiati, R.I.,
2013. Selective imitation impairments differentially interact with language proces-
sing. Brain 136, 2602-2618.

Mozaz, M., Rothi, L.J., Anderson, J.M., Crucian, G.P., Heilman, K.M., 2002. Postural
knowledge of transitive pantomimes and intransitive gestures. J. Int. Neuropsychol.
Soc. 8, 958-962.

Niessen, E., Fink, G.R., Weiss, P.H., 2014. Apraxia, pantomime and the parietal cortex.
Neuroimage Clin. 5, 42-52.

Oertel-Knochel, V., Knochel, C., Rotarska-Jagiela, A., Reinke, B., Prvulovic, D., et al.,
2013. Association between psychotic symptoms and cortical thickness reduction
across the schizophrenia spectrum. Cereb. Cortex 23, 61-70.

Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh in-
ventory. Neuropsychologia 9, 97-113.

Panizzon, M.S., Fennema-Notestine, C., Eyler, L.T., Jernigan, T.L., Prom-Wormley, E.,
et al., 2009. Distinct genetic influences on cortical surface area and cortical thickness.
Cereb. Cortex 19, 2728-2735.

Park, S., Matthews, N., Gibson, C., 2008. Imitation, simulation, and schizophrenia.
Schizophr. Bull. 34, 698-707.

Rimol, L.M., Hartberg, C.B., Nesvag, R., Fennema-Notestine, C., Hagler Jr., D.J., et al.,
2010. Cortical thickness and subcortical volumes in schizophrenia and bipolar dis-
order. Biol. Psychiatry 68, 41-50.

Sprooten, E., Papmeyer, M., Smyth, A.M., Vincenz, D., Honold, S., et al., 2013. Cortical
thickness in first-episode schizophrenia patients and individuals at high familial risk:
a cross-sectional comparison. Schizophr. Res. 151, 259-264.

Stegmayer, K., Bohlhalter, S., Vanbellingen, T., Federspiel, A., Moor, J., et al., 2016a.
Structural brain correlates of defective gesture performance in schizophrenia. Cortex
78, 125-137.

Stegmayer, K., Moor, J., Vanbellingen, T., Bohlhalter, S., Muri, R.M., et al., 2016b.
Gesture performance in first- and multiple-episode patients with schizophrenia
spectrum disorders. Neuropsychobiology 73, 201-208.

Stegmayer, K., Bohlhalter, S., Vanbellingen, T., Federspiel, A., Wiest, R., et al., 2017.
Limbic interference during social action planning in Schizophrenia. Schizophr. Bull.

Straube, B., Green, A., Sass, K., Kirner-Veselinovic, A., Kircher, T., 2013. Neural in-
tegration of speech and gesture in schizophrenia: evidence for differential processing
of metaphoric gestures. Hum. Brain Mapp. 34, 1696-1712.

Straube, B., Green, A., Sass, K., Kircher, T., 2014. Superior temporal sulcus dis-
connectivity during processing of metaphoric gestures in schizophrenia. Schizophr.
Bull. 40, 936-944.


https://doi.org/10.1016/j.nicl.2017.10.017
https://doi.org/10.1016/j.nicl.2017.10.017
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0005
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0010
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0010
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0010
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0015
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0015
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0020
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0020
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0025
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0025
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0025
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0030
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0030
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0030
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0035
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0035
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0040
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0040
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0045
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0045
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0050
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0050
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0055
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0055
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0055
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0065
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0065
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0065
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0070
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0075
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0075
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0080
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0080
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0085
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0085
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0085
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0090
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0095
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0095
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0100
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0100
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0100
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0105
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0105
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0110
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0110
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0110
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0115
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0115
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0120
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0120
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0120
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0125
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0125
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0125
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0130
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0130
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0130
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0135
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0135
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0135
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0140
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0140
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0145
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0145
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0145
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0150
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0150
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0155
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0155
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0155
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0160
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0160
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0165
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0165
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0170
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0170
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0175
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0175
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0180
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0180
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0180
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0185
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0185
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0190
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0190
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0195
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0195
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0195
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0200
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0200
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0200
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0205
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0205
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0210
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0210
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0210
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0215
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0215
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0220
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0220
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0220
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0225
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0225
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0230
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0230
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0230
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0235
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0235
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0235
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0240
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0240
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0240
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0245
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0245
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0245
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0250
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0250
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0255
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0255
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0255
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0260
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0260
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0260

P.V. Viher et al.

Thakkar, K.N., Peterman, J.S., Park, S., 2014. Altered brain activation during action
imitation and observation in schizophrenia: a translational approach to investigating
social dysfunction in schizophrenia. Am. J. Psychiatry 171, 539-548.

Vanbellingen, T., Kersten, B., Van Hemelrijk, B., Van de Winckel, A., Bertschi, M., et al.,
2010. Comprehensive assessment of gesture production: a new test of upper limb
apraxia (TULIA). Eur. J. Neurol. 17, 59-66.

Vijayakumar, N., Allen, N.B., Youssef, G., Dennison, M., Yucel, M., et al., 2016. Brain
development during adolescence: a mixed-longitudinal investigation of cortical
thickness, surface area, and volume. Hum. Brain Mapp. 37, 2027-2038.

Vry, M.S., Tritschler, L.C., Hamzei, F., Rijntjes, M., Kaller, C.P., et al., 2015. The ventral
fiber pathway for pantomime of object use. Neurolmage 106, 252-263.

Walther, S., Mittal, V.A., 2016. Why we should take a closer look at gestures. Schizophr.
Bull. 42, 259-261.

Walther, S., Vanbellingen, T., Muri, R., Strik, W., Bohlhalter, S., 2013a. Impaired gesture
performance in schizophrenia: particular vulnerability of meaningless pantomimes.
Neuropsychologia 51, 2674-2678.

Walther, S., Vanbellingen, T., Muri, R., Strik, W., Bohlhalter, S., 2013b. Impaired pan-
tomime in schizophrenia: association with frontal lobe function. Cortex 49, 520-527.

Walther, S., Stegmayer, K., Sulzbacher, J., Vanbellingen, T., Muri, R., et al., 2015.
Nonverbal social communication and gesture control in schizophrenia. Schizophr.

221

Neurolmage: Clinical 17 (2018) 213-221

Bull. 41, 338-345.

Walther, S., Eisenhardt, S., Bohlhalter, S., Vanbellingen, T., Muri, R., et al., 2016. Gesture
performance in schizophrenia predicts functional outcome after 6 months. Schizophr.
Bull. 42, 1326-1333.

Weiss, P.H., Ubben, S.D., Kaesberg, S., Kalbe, E., Kessler, J., et al., 2016. Where language
meets meaningful action: a combined behavior and lesion analysis of aphasia and
apraxia. Brain Struct. Funct. 221, 563-576.

White, T.P., Borgan, F., Ralley, O., Shergill, S.S., 2016. You looking at me?: interpreting
social cues in schizophrenia. Psychol. Med. 46, 149-160.

Winkler, A.M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., et al., 2010. Cortical
thickness or grey matter volume? The importance of selecting the phenotype for
imaging genetics studies. NeuroImage 53, 1135-1146.

Woods, S.W., 2003. Chlorpromazine equivalent doses for the newer atypical anti-
psychotics. J. Clin. Psychiatry 64, 663-667.

Yang, J., Andric, M., Mathew, M.M., 2015. The neural basis of hand gesture compre-
hension: a meta-analysis of functional magnetic resonance imaging studies. Neurosci.
Biobehav. Rev. 57, 88-104.

Ziermans, T.B., Schothorst, P.F., Schnack, H.G., Koolschijn, P.C., Kahn, R.S., et al., 2012.
Progressive structural brain changes during development of psychosis. Schizophr.
Bull. 38, 519-530.


http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0265
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0265
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0265
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0270
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0270
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0270
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0275
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0275
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0275
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0280
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0280
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0285
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0285
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0290
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0290
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0290
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0295
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0295
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0300
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0300
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0300
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0305
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0305
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0305
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0310
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0310
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0310
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0315
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0315
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0320
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0320
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0320
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0325
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0325
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0330
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0330
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0330
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0335
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0335
http://refhub.elsevier.com/S2213-1582(17)30260-7/rf0335

	The cortical signature of impaired gesturing: Findings from schizophrenia
	Introduction
	Materials and methods
	Participants
	Gesture tests
	MRI acquisition
	Data analyses
	Cortical thickness analyses
	Statistical analyses


	Results
	Behavioral and clinical data
	Group differences in cortical thickness
	Associations of impaired gesture production and recognition with cortical thickness

	Discussion
	Conclusion
	Funding Source
	Conflict of interest
	Supplementary data
	References




